
Rigid Origami 
Summary

Thomas Hull, Merrimack College



Things to remember
• By rigid origami we mean origami that 

can be folded while keeping all regions of 
the paper flat and all crease lines straight.

• We try to study rigid origami by making a 
mathematical model of it.              
There is more than one way to do this:

- a matrix model
- a geometric model (Gaussian curvature)

We hope that such models will be able to answer 
our questions about rigid folds.



What are the questions?

• Given an origami fold, how can we prove 
that it is rigid / not rigid?

• Can rigidity analysis tell us anything about 
how such origami folds and unfolds 
continuously?



Matrix Model

The idea: rigid motions of the plane are isometries, 
and so can be modeled with linear transformations.

Note: the angles 
shown above are 
the folding angles.



Matrix Model

Modeling a single rigid vertex: imagine a spider 
walking around the vertex on the folded paper.

Here each crease is 
labeled with (   ,   ), 
where
    = position angle
    = folding angle
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Matrix Model
Let      = rotation counterclockwise by angle      about 
crease line    (which lies in the xy plane).

First crease the spider crosses: rotation is 

Second crease: rotation is 

Third crease:

 th crease:  (redo previous   s)•    • (undo previous   s)
                                                     in reverse order
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Matrix Model
Necessary condition for rigidity: the spider 
must come back to where it started.

In other words,                    .

Since                                  this simplifies to: 
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LnLn−1...L1 = I
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Li = χ1...χ i−1χ iχ i−1
−1 ...χ1

−1
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χ1χ2...χn = I

(credits, Kawasaki 1996, belcastro and Hull 2003)



This satisfies                     but it self-intersects.

• It’s not a sufficient condition.                 
Example:

Matrix Model
Problems with this model:
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χ1χ2...χn = I



• It’s not a sufficient condition. 

• It does not say anything about the 
continuous folding/unfolding process.   
(That is, can we get from the unfolded state 
to the desired folded state via a rigid 
folding motion?)

Matrix Model
Problems with this model:



Gaussian Curvature Model

´

Definition of Gaussian curvature at a point on a surface:
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κ = lim
Γ→P

Area in ′ Γ 
Area in Γ

Then the curvature    of the surface at    is
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Gaussian Curvature Model
Definition of Gaussian curvature at a point on a surface:

On a “Pringle chip” surface, the 
Gauss map curve will go in the 
opposite direction as the original.  
We consider the area inside such a 
Gauss map curve to be negative, and 
we call this negative curvature.



Gaussian Curvature Model
Definition of Gaussian curvature at a point on a surface:

Also, the curvature of a surface should not change if we 
deform the surface nicely (i.e., bending).



Gaussian Curvature Model

´
How this applies to origami:

Paper has zero curvature everywhere.



Gaussian Curvature Model
When the curve     crosses a mountain crease, the 
Gauss map travels in the same direction.

When the curve     crosses a valley crease, the 
Gauss map travels in the opposite direction.
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Gaussian Curvature Model
Example: a 4-valent vertex fold

´

This should still have zero curvature!  Does it?



Gaussian Curvature Model
Example: a 4-valent vertex fold

´

So (Area of Top)–(Area of Bottom)=

€ 

β1 + β2 + θ −π

€ 

(π −β3) + (π −β4 ) + θ −π

Area of the top 
triangle=

Area of the bottom 
triangle=

€ 

α i = π −βiAlso notice that

€ 

((π −α1) + (π −α2)) − (α3 +α4 )

€ 

= 2π − (α1 +α2 +α3 +α4 ) = 0.
Credits: 

Huffman 1976, 
Miura 1980.



Gaussian Curvature Model
Animations



Gaussian Curvature Model
Proving that some folds are non-rigid:

Can a 4-valent, all-mountains vertex be folded rigidly?



Gaussian Curvature Model
Proving that some folds are non-rigid:

What about 3 mountains, 1 valley, with 90° angles 
between them?

´



Gaussian Curvature Model
Proving that some folds are non-rigid:

What about the hyperbolic paraboloid?



Focus on 4-valent Flat Vertices
Consider such a partially-folded vertex centered at a 
sphere of radius one.  Then the paper cuts out a 
spherical (non-convex) quadrilateral on the sphere.
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δi = the dihedral angle at the  th crease.
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Focus on 4-valent Flat Vertices
The spherical law of cosines says:

€ 

cosξ = cosα1 cosα2 + sinα1 sinα2 cosδ1

€ 

cosξ = cosα3 cosα4 + sinα3 sinα4 cosδ3
(1)
(2)
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α3 = π −α1Kawasaki’s Theorem says that                  and                  .
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α4 = π −α2

€ 

cosξ = cosα1 cosα2 + sinα1 sinα2 cosδ3Plugging this into (2) gives
Subtract this from (1) and get...



Focus on 4-valent Flat Vertices

Now,               , so those sines can’t be zero.

€ 

sinα1 sinα2(cosδ1 − cosδ3) = 0

€ 

0 <α i < π

€ 

cosδ1 = cosδ3

€ 

cosδ2 = cosδ4So                  and                   .
Thus           and                .
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δ1 = δ3
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δ2 = 2π −δ4



Focus on 4-valent Flat Vertices
Now,               , and after some truly yucky spherical 
trig we can get

€ 

δ4 = φ + ρ

€ 

cosδ2 = cosδ1 −
sin2δ1 sinα1 sinα2

1− cosξ

Since cosine is an decreasing function from 0 to π/2,
we have

€ 

cosδ2 < cos δ  1 ⇒δ  1 > δ2



Focus on 4-valent Flat Vertices
Thus for a 4-valent flat, rigid vertex, we have
• opposite pairs of dihedral angles are “equal.”
• the same-parity pair are greater than the other pair.

Corollaries:
One dihedral angle will determine all the others.

The classic square twist is not a rigid fold.



Square Twists




