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1. Introduction
1.1 Background
Origami is the Japanese name for the centuries-old art of folding
paper into representations of birds, insects, animals, plants, human
figures, inanimate objects, and abstract shapes. In the purest form
of origami, the figure is folded from a single uncut square of
paper. In the past 50 years, the complexity of origami figures has
increased dramatically, evolving from simple, stylized shapes to
highly detailed representations of crustacea [1], insects [2, 3],
dinosaurs [4, 5], and other multi-legged, multi-winged, and
generally multi-appendaged creatures. As the range of origami
subject matter has expanded in complexity, the problem of folding
a base — a geometric shape with flaps for each of the appendages
of the subject — has assumed greater and greater importance.
Indeed, the problem of folding a multi-pointed base constitutes the
bulk of that branch of the art known as origami sekkei, or
“technical folding.”
Throughout the history of origami, most origami design has been
carried out by a combination of trial and error and/or heuristic
techniques based on the folder’s intuition. In this paper, I present
for the first time a complete algorithm for the design of an
arbitrary origami figure, specifically, for the solution of a crease
pattern that folds flat into a base with any desired number of flaps
of arbitrary length, which become the arms, legs, wings, etc., of
the origami figure. The algorithm is based on a set of
mathematical conditions on the mapping between the crease
pattern and a tree graph representing the base. In this fashion, the
problem is transformed into a nonlinear constrained optimization,
which as it turns out, is closely related to existing circle packing
and triangulation algorithms. I have implemented the algorithm in
a computer program written in C++ that is available on the
Internet; with it one can compute the crease pattern for origami
designs of unprecedented complexity and sophistication.
1.2 Previous Work
The problem of designing an origami shape based on the number
of appendages has been recognized for years [6] and several
workers have addressed various aspects of origami design [7–9],
albeit typically at a conceptual rather than an algorithmic level. In
recent years, several authors, notably Meguro [10], Maekawa [11],
Kawahata [12], and Kawasaki [13] have described useful
geometric algorithms for the design of a base in which the target
shape is represented as a stick figure, and flaps of the base are
represented by nonoverlapping circles and/or circular contours. I
have also described a geometric algorithm for origami design in
[14]. The present work builds upon and generalizes concepts
presented in and implicit in [10–14], mathematically proves the
underlying theory, and completes the algorithm begun in [14] in a
form suitable for computer implementation.
1.3 Outline of the Approach
The basis of many complex origami designs is a geometric shape
called a base, which is a folded configuration of the original
square that has the same number of flaps of the same length as the
appendages of the subject. Once the folder has a base with the

right number of flaps, it is relatively easy to transform it into a
recognizable representation of the subject, so for complex
subjects, at least, most effort is focused on folding the base to
begin with.
I begin in section 2 by establishing a mathematical definition of a
base and several useful measures of its properties, including the
tree graph that forms an abstraction of the base and that serves to
define the target design. In section 3 I establish a set of necessary
conditions relating key vertices of the crease pattern to properties
of the desired base. These necessary conditions help identify
“active paths” — primary valley creases that subdivide the crease
pattern into convex polygons, which correspond to distinct
portions of the base. Sections 4 and 5 introduce the “universal
molecule,” an algorithm for filling in the creases in each polygon.
Section 6 describes the mathematical and computer
implementation of the algorithm and gives an example of its usage
in the construction of an origami base.

2. Sufficient Conditions
2.1 What is a Base?
To start, I will establish some definitions:
A crease pattern  is a division of the unit square into a finite set of
polygonal regions by a set of straight line segments. Each segment
is called a crease . Each polygon, which is bounded by a
combination of creases and the edge of the square, is called a
facet  of the crease pattern.
A base is a non-stretching transformation of the unit square into
3-space such that the facets remain flat, i.e., all folding occurs
only on creases. A base can therefore be fully defined by the
locations of the creases, their angles, and the orientation and
location of a facet.
A flat-foldable crease pattern is any crease pattern that can be
folded into a base so that all layers of the base lie in a common
plane.
A base may have several properties:
1. Projectability. A projectable  base can be oriented in 3-space so
that all facets of the base are perpendicular to the xy  plane. The
projection  of any base or element of a base is the projection of
that element into the xy  plane. That is, the projection of a point
(x,y,z) is the point (x,y). Since the facets of a projectable base are
perpendicular to the xy  plane, the projection of any facet of a
projectable base is a line segment.

x

y

(1,1)

(1,0)(0,0)

(0,1)

Figure 1. Left: a crease pattern within the unit square. Right: the
crease pattern embedded in 3-space and transformed into a base.
The projection of the base lies in the xy  plane.

The projections of facets that meet along a crease are line
segments that touch at a point or overlap along a line segment.



Since the facets of a crease pattern are connected, the set of all
line segments formed by projecting individual facets into the xy
plane is connected as well and forms a planar embedding of a tree
graph . The line segments thus formed are the edges of the graph;
points where two edges come together are nodes of the graph.
Nodes that have exactly one edge connected to them are terminal
nodes; the remaining nodes are internal nodes .
Definition: a flap  is a group of facets in a base that project to a
common edge of the tree graph such that:
1. Every facet in the flap projects to the same edge;
2. Any facet in the base that projects to the edge and is connected
to a facet of the flap is itself a part of the flap.
3. The boundary of the facets that make up the flap projects to one
or two nodes that are the endpoint(s) of the edge.
Therefore each flap in a base is associated with an edge of the tree
graph. In many cases, the flaps of a projectable base can be
positioned at different angles, in 3-space giving projected tree
graphs that differ in the arrangement of their edges. Note that two
side-by-side flaps may project to overlapping line segments in the
xy  plane; we still distinguish different flaps by associating them
with distinct edges of the tree graph. To avoid ambiguity, a tree
graph will always be drawn with nonoverlapping edges, but it
should be understood that such a graph could represent a base
with side-by-side flaps or even one flap wrapped around another,
as shown in figure 2, whose projections include overlapping
edges.
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Figure 2. A base with wrapped flaps. Flaps D, E, and F, although
wrapped around each other, correspond to distinct edges of the
tree graph.

Each edge of a tree graph has a length associated with it, which is
the length of the edge in the projection. Two tree graphs are
considered to be identical if they are topologically equivalent and
corresponding edges have the same weights. The act of projecting
a base onto a tree graph provides a mapping from the crease
pattern to the base and thence to the tree graph.
A few more properties:
2. Completeness. A complete  base is a base in which every facet
belongs to a unique flap. Note that in a complete projectable base,
all “hinges” between connected flaps are parallel to the z axis.
3. Connectedness. A simply connected base is a base whose tree
graph is simply connected (i.e., contains no closed loops).
4. Orientability. An oriented base is a base that lies in the half-
space z≥0 such that the intersection of the base with the xy  plane is
identical to its projection in the xy  plane. Put differently, an
oriented base is a base that precisely covers its shadow.
Finally, a uniaxial base  is an oriented, complete, simply
connected, projectable base. These definitions provide a
mathematical way of characterizing a uniaxial base in terms of the
length and number of its constituent flaps by constructing the tree
graph from the base. The length of the flaps are simply defined by
the lengths of their corresponding edges on the tree graph. The
algorithm in this work addresses the inverse problem: given a tree
graph, construct a uniaxial base whose projection is the desired
graph.

2.2 Comment
Throughout the history of origami, most but not all origami bases
have been uniaxial bases. The four classic bases of traditional
Japanese origami — the Kite, Fish, Bird, and Frog bases — may
be configured to be uniaxial, as can many more complicated and
sophisticated bases exploited by modern technical folders [3,4,6–
9]. It should be noted, however, that there are many bases that are
not uniaxial (notably Montroll’s Dog Base [2] and its derivatives
[5]) as well as curved and/or three-dimensional structures, all of
which require different design strategies.

3. Necessary Conditions
3.1 Tree Conditions
The transformation from the two-dimensional crease pattern into
the three-dimensional base can be expressed by a mapping
F(P)→Q, where P  is a point in the unit square and Q is the
corresponding point in the 3-space representation of the base.
According to the conventions of origami transformations (no
stretching, no self-intersection) [15–16], F is one-to-one and I will
call F the transformation operator.
Similarly, a mapping G(Q)→R expresses the projection of the
point Q  onto the tree graph. G , which I will call the projection
operator, is obviously not one-to-one, since all points with the
same x and y coordinates map onto the same point on the tree
graph. If S  is the crease pattern in the unit square, the
transformation of S into a base B and thence into a tree graph T
can be written T =G(F(S)) when F  is known. The design of a
uniaxial base boils down to the inversion of this problem: given T,
find the mapping F  and crease pattern S that transform and project
S into T. As I will show, knowledge of T  places some restrictive
conditions on the crease pattern S that are key to the solution of
the problem.
Definition: A path  L(P1,P2) is a straight line between two points
(P1, P2) in the unit square.

Theorem 1: For any two points P1 and P2 on the crease pattern,
the length of path L(P1,P2) is at least the length of the transformed
path G(F(L)) in the embedded tree.
Proof : Consider such a path L, which in S consists of a collinear
set of line segments li , one for each facet crossed by the path. The

length of this path is given by li
i

∑ . Upon transformation into the

base, the path is transformed into a piecewise linear line F(L) of
the same length li

i
∑  since, within each facet, F  preserves

distances. However, upon taking the projection of the transformed
path G(F(L)), each segment will be reduced in length by a factor
cos α i, where αi is the angle between the transformed segment
and the xy  plane. Therefore, the length of the projection of the
path is li cosα i

i
∑ . Since all of the multipliers are 1 or less, the

length of the projection must be less than or equal to the length of
the original path.
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Figure 3. Left: a path crossing facet boundaries in the unit square.
Right: the transformed path is piecewise linear. The length of the
original path is greater than or equal to the length of its projection
on the embedded tree.



Corollary 1: If P1 and P2 are two points in the crease pattern S
and F(P1) lies in the xy  plane, the length of the path L (P1,P2) is
equal to the length of G(F(L)) if and only if F(L) lies in the xy
plane.
Proof : By theorem 1, equality holds only when each of the
cosines is equal to 1 and the angles αi are zero. Therefore each of
the line segments of the transformed path is parallel to the xy
plane. Since one endpoint of the path transforms to the xy plane
and the path is parallel to the xy plane, the entire path must lie in
the xy plane. Conversely, if the transformation lies in the xy plane,
then all of the angles α i are zero by definition.

Definition: A vertex  is a point in the unit square where two or
more creases come together.
Definition: A terminal vertex  is a vertex whose transformation
lies in the xy  plane and whose projection is a terminal node of the
tree graph.
Lemma 1. The length of the projection of a path between two
terminal vertices is greater than or equal to the sum of the lengths
of the edges between the two corresponding terminal nodes on the
tree graph.
Proof : Since the tree graph is simply connected, the projection of
the path must at a minimum include the edges between the two
corresponding terminal nodes. Consequently, its length is greater
than or equal to the sum of the lengths of the edges.
These definitions and results lead to the fundamental theorem
underlying the algorithm of this paper:
Theorem 2: For any uniaxial base, the distance between any two
terminal vertices in the crease pattern is greater than or equal to
the sum of the lengths of the edges connecting the two
corresponding terminal nodes in the tree graph.
Proof : Consider the path between two terminal vertices.
According to theorem 1, the length of the projection of the path is
less than or equal to the length of the path, which is the distance
between the two vertices. But since the projection of the path must
lie on the tree graph, and the tree graph is simply connected, the
edges that lie between the corresponding terminal nodes must be a
subset of the edges that comprise the projection of the path.
Consequently, the sum of the lengths of the connecting edges is
less than or equal to the length of the projection, which is less than
or equal to the length of the original path.
3.2 Discussion
Theorem 2 establishes a set of necessary conditions on the
terminal vertices of a crease pattern that folds into a base that
projects to a specified tree graph. Given a tree with N terminal
nodes, the terminal vertices ui in the unit square must satisfy the

N(N–1)/2 conditions ui − u j ≥ lij  where li j  is the distance

between the terminal nodes as measured along the tree graph. I
will call these conditions the tree conditions. Note that while the
conditions of theorem 1 apply to every possible pair of points in S,
the tree conditions apply only to terminal vertices. In the next
sections, I will show that the tree conditions are by themselves
sufficient for the existence of the desired crease pattern.

4. Subtrees and Active Paths
Definition: an active path  is a path between two terminal vertices
whose length is equal to the sum of the lengths of the edges
connecting the two corresponding terminal nodes in the tree
graph.
Theorem 3 . Every active path is either a crease or the edge of the
square.
Proof : According to corollary 1 above, since the length of the
active path equals the length of its projection, the transformed
active path must lie in the xy  plane. But since facets touch the xy
plane only at their boundaries, the active path must lie along facet

boundaries. Since the boundaries of facets are either creases or the
edge of the square, every active path must be composed of creases
or the edge of the square. Since both paths and the edges of the
square are straight lines, if any portion of a path is the edge of the
square, the entire path must be the edge of the square.
Consequently, the path is either wholly crease or wholly square
edge.
Thus, given a tree graph, one can begin to design a crease pattern
that folds into the corresponding uniaxial base by identifying a set
of terminal vertices that satisfy the tree conditions; then the active
paths between terminal vertices are a subset of the creases of the
base. It remains to identify the remaining creases.
It can be shown that active paths cannot cross; they touch only at
terminal vertices. Thus, active paths do more than define creases;
they break up the unit square into regions that may be investigated
independently.
Definition: an active polygon is a region of the unit square
containing no terminal vertices in its interior whose boundary is
formed exclusively by active paths.
Definition: a subbase  is the transformation of an active polygon
into a portion of the base.
Definition: a subtree  is the projection of a subbase.
Observe that if every terminal vertex lies on the boundary of at
least one active polygon, then the union of all of the subtrees
corresponding to active polygons is the complete tree graph. Also
note that the edges of an active polygon, being active paths, must
lie in the xy  plane after transformation. Thus, if one can identify
the creases within each active polygon that transform it into a
subbase, the individual subbases can figuratively be stitched
together at their edges (the active paths) to form the overall base
whose projection is the desired tree graph.

5. Molecules
5.1 The Universal Molecule
Within origami, there has been a recognition that certain crease
patterns show up again and again in origami bases and the term
bun-shi  (molecule) was coined by Meguro [10, 11] to describe
various regular patterns. I will adopt this terminology in this work
to apply to the creases that fill an active polygon. The goal is to
identify creases along which the active polygon can be folded into
its corresponding subbase, which is itself a uniaxial base. It is easy
to show that any convex polygon can be folded into some uniaxial
base using a construction analogous to the Maekawa molecule
(see figure 7). However, we need something stronger:
Theorem 4. Any active polygon that satisfies the tree conditions
for a given subtree can be folded into a uniaxial base whose
projection is the subtree.
Proof: The proof is by construction. Consider an active polygon
with a corresponding subbase and subtree. By definition, the
edges of the active polygon are active paths and the transformed
edges of the subbase lie in the xy plane. All paths between
adjacent terminal vertices are active; all paths between
nonadjacent terminal vertices are not active, i.e., none are at their
minimum length.
Suppose we inset the boundary of the polygon by a distance h, as
shown in figure 4. If the original vertices of the polygon were A1,
A2,… then we will label the inset vertices A1′ , A2′ ,…. I will call
the inset polygon a reduced polygon of the original polygon. The
boundary of the reduced polygon is formed by the intersection of
a plane parallel to the xy  plane at height z=h with the subbase.
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Figure 4.  A reduced polygon is inset a distance h inside of an
active polygon. The inset corners lie on the angle bisectors (dotted
lines) emanating from each corner.

Note that the points Ai ′ lie on the bisectors emanating from the
points Ai for any h. Consider first a reduced polygon that is inset
by an infinitesimally small amount. In the subbase, the sides of the
reduced polygon all lie in a common plane, just as the sides of the
original active polygon all lie in a common plane; however, the
plane of the sides of the reduced polygon is offset from the plane
of the sides of the active polygon by a perpendicular distance h.
As we increase h, we shrink the size of the reduced polygon. Is
there a limit to the shrinkage? Yes, there is, and this limit is the
key to the universal molecule. Recall that for any polygon that
satisfies the tree conditions, the path between any two vertices
satisfies a path length constraint

Ai − Aj ≥ lij , (1)

where lij  is the path length between nodes i and j  measured along
the tree graph. There is an analogous condition for reduced
polygons; any two vertices of a reduced polygon must satisfy the
condition

′Ai − ′Aj ≥ ′lij , (2)

where ′lij  is a reduced path length  given by

′lij = lij − h cot α i + cot α j( ) (3)

and αi is the angle between the bisector of corner i and the
adjacent side. I call equation (2) the reduced path constraint  for
a reduced polygon of inset distance h. Any path for which the
reduced path constraint becomes an equality is, in analogy with
active paths between nodes, called an active reduced path.
So for any distance h, there is a unique reduced polygon and a set
of reduced path constraints, each corresponding to one of the
original path constraints. The reduced path constraints are
parameterized by the inset distance h. We have already assumed
that all of the original path constraints are met; thus, we know that
all of the reduced path constraints are met for the h=0 case (no
inset distance). It can also be shown that there is always some
positive nonzero value of h for which the reduced path constraints
hold. On the other hand, as we increase the inset distance, there
comes a point beyond which one or more of the reduced path
constraints is violated. Suppose we increase h  to the largest
possible value for which every reduced path constraint remains
true. At the maximum value of h, one or both of the following
conditions will hold:
(1) For two adjacent corners, the reduced path length has fallen to
zero and the two inset corners are degenerate; or
(2) For two nonadjacent corners, a path between inset corners has
become an active reduced path.
These two situations are illustrated in figure 5.
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Figure 5. (Left) Two corners are inset to the same point, which is
the intersection of the angle bisectors. (Right) Two nonadjacent
corners inset to the point where the reduced path between the inset
corners becomes active.

As I said, one or the other or both of these situations must apply; it
is possible that paths between both adjacent and nonadjacent
corners have become active simultaneously or that multiple
reduced paths have become active for the same value of h. In
either case, the reduced polygon can be simplified, thus reducing
the complexity of the problem.
In a reduced polygon, if two or more adjacent corners have
coalesced into a single point, then the reduced polygon has fewer
sides (and paths) than the original active polygon. And if a path
between nonadjacent corners has become active, then the reduced
polygon can be split into separate polygons along the active
reduced paths, each with fewer sides than the original polygon
had. In either situation, you are left with one or more polygons
that have fewer sides than the original. The process of insetting
and subdivision is then applied to each of the interior polygons
anew, and the process repeated as necessary.
If a polygon (active or reduced) has three sides, then there are no
nonadjacent reduced paths. The three bisectors intersect at a point,
and the polygon’s reduced polygon evaporates to a point,
completing the desired crease pattern.
Four-sided polygons can have the four corners inset to a single
point or to a line, in which case no further insetting is required, or
to one or two triangles, which are then inset to a point. Higher-
order polygons are subdivided into lower-order ones in direct
analogy.
Since each stage of the process absolutely reduces the number of
sides of the reduced polygons created (although possibly at the
expense of creating more of them), the process must necessarily
terminate. Since each polygon (a) can fold flat, and (b) satisfies
the tree conditions, then the entire collection of nested polygons
must also satisfy the tree condition. Consequently, any  active
polygon that satisfies the tree conditions can be filled with a
crease pattern using the recursive procedure outlined above and
collapsed into a base on the resulting creases.
Each polygon so divided consists of two parts: the core  is the
reduced polygon (which may be crossed by active reduced paths);
the border around the core is the ring. The angle bisectors that
cross the ring become mountain folds of the crease pattern. Active
reduced paths that cross the core such as ′A2 ′A5  in figure 5 become
valley folds. In addition, there are creases that emanate from each
vertex of the crease pattern that are perpendicular to active paths;
these may be mountain, valley, or flat (uncreased), depending on
the desired orientation of the flaps. The same rules for the
assignment of creases apply to each level of the recursive
construction.
For triangular active polygons, there is no recursion; the three
angle bisectors of the triangle meet at a point. The bisectors form
mountain folds and the perpendiculars from the intersection of the
bisectors to the three edges become valley folds. The crease
pattern thus obtained is well known in the origami literature. The



procedure is called a rabbit ear and the crease pattern is thus called
the rabbit ear molecule. It is shown in figure 6.
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Figure 6. Crease pattern for a rabbit ear molecule and resulting
subbase. Note that the three flaps of the subbase have the same
lengths as the three edges of the planar graph.

The construction of the rabbit ear molecule is straightforward. If
pA, pB, and pC are the vector coordinates of the three corners A, B,
and C, and pE is the coordinate of the bisector intersection, then
pE is given by the simple formula

pE = pA(b + c) + pB(c + a) + pC (a + b)
2(a + b + c)

.

That is, the location of the bisector intersection is simply the
average of the coordinates of the three corners with each corner
weighted by the length of the opposite side.
For quadrilaterals and higher-order polygons, one or more levels
of recursion may be required. Figure 7 illustrates the four possible
results of this procedure applied to quadrilateral active polygons.
The patterns for both triangles and quadrilaterals have been
previously identified in the origami literature as types of
molecules; however, it is clear that the process described above
can be applied to polygons of arbitrary complexity. I call this
general construction, which to my knowledge has not been
previously described, the universal molecule  algorithm.

Figure 7. The four possible crease patterns for a quadrilateral
active polygon. If all four corners are inset to the same point, the
result is the Husimi molecule (top left). If adjacent pairs of
corners are inset to two points, the Maekawa molecule is obtained
(top right). If the inset polygon is a triangle, it is filled in with a
rabbit ear molecule, which also results in a Maekawa molecule
(bottom left). Finally, if the inset polygon is a quad crossed by an
active reduced path, the result is the “gusset quad” molecule.

5.2 Fracture Algorithm
An alternative strategy to filling in a large active polygon using
the universal molecule algorithm is to break it into smaller active
polygons. This can be accomplished by adding a new edge — a
stub — somewhere in the subtree of such length and location that
the new terminal vertex forms four active paths with existing
vertices of the polygon. This has the effect of breaking up the

polygon into polygons of lower order. Such addition is always
possible; there are four path conditions that must be satisfied and
four degrees of freedom: the x and y coordinates of the terminal
vertex, the length of the new edge, and the location on the tree
where the new edge joins the original tree. This procedure is a
generalization of Meguro’s method of overlapping circles for
filling in quadrilateral molecules [10, 11]. I call it the fracture
algorithm  for polygons.
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Figure 8. (Left) Tree graph and active polygon for a 5-pointed
base, filled in with the universal molecule. (Right) By adding
stubs to the tree, the polygon is fractured into all triangular active
polygons.

Adding a vertex to the interior of an order-N polygon with four
active paths creates four new polygons. However, the largest new
polygon can have at most N–1 sides (in which case the other three
polygons are triangles). By recursively applying the fracturing
algorithm to a set of active polygons, any crease pattern can be
reduced entirely to rabbit ear molecules.
5.3 Crease Assignment
In a valid crease pattern, crease lines will be either valley folds,
mountain folds, or uncreased (0° fold angle). The algorithms
described above identify the creases of the base; however, they
must still be assigned. As mentioned earlier, the angle bisector
folds in the universal molecule are mountain folds and active
reduced paths are valley folds. Between active polygons, the
active paths, which form the boundaries between active polygons,
are all valley folds for terminal vertices that lie on the boundary of
the square. For terminal vertices in the interior, the situation gets
more complicated. Maekawa’s theorem [13] states that for an
interior vertex, the number of mountain and valley creases around
the vertex differ by ±2; thus, one of the active paths connected to
an interior terminal vertex must be converted to a mountain fold
along at least a portion of its length.
In addition to active paths, active reduced paths, and angle
bisectors, there is a family of creases that must be constructed that
radiate from every vertex of the crease pattern and are
perpendicular to the active paths and reduced active paths. Most
of these creases are in fact uncreased; however, some also become
mountain and/or valley folds. The assignment of these remaining
creases depends upon the specific configuration chosen for the
flaps of the base. If a flap is turned one way, some creases will be
valley, others will be mountain, and some will be uncreased; turn
the flap the other way, and the assignments change.



Based on the foregoing algorithms, there remains some ambiguity
in the assignment of creases for the base to fold flat. Bern and
Hayes recently showed that the problem of determining a flat-
foldable assignment of mountain and valley folds for an arbitrary
crease pattern is NP-complete [17]. In a crease pattern constructed
by the tree conditions/universal molecule, quite a bit of
information is already known about the identity of most of the
creases, which may reduce the complexity of the problem.
However, a complete algorithm for crease assignment is still not
yet known. As a practical matter, I find that once I know the
location of all of the creases, I can find a valid crease assignment
by empirical means.

6. Computational Implementation
6.1 Optimization Algorithm
The tree conditions must hold for every pair of terminal vertices
and their corresponding terminal nodes on the tree. Thus, if there
are N nodes, there are N(N–1)/2 inequality conditions that must be
satisfied. Obviously the ease of satisfying all path conditions
depends on the size of the tree graph relative to the size of the
square. Since the longest possible path on the unit square is the
diagonal with length 2 , the tree cannot have any path longer
than this. In practice, no path can be considered by itself, since the
location of any terminal vertex affects the lengths of several
different paths, and the longest possible path is often not even this
long.
Generally, the origami designer seeks the largest possible base for
a given size square. The most efficient base (having the fewest
layers of paper) is obtained for the largest possible tree graph. The
size of the tree graph can be related to the square by a scale factor
m; that is, each edge of the tree graph is given a length that is a
multiple of m . The most efficient base is that with the largest
numerical value of m. Then the solution of a node pattern for a
base corresponding to a tree graph can be found by solving a
nonlinear constrained optimization:

Given a weighted tree graph P with nodes Pi  and Pj, define
lij  as the length of the path between Pi and Pj on the tree.
Let ui be the vector coordinates of node i in the unit square
with x and y components ui,x  and ui,y . Then an optimally
efficient crease pattern is found by maximizing m  over all
ui subject to the constraints:

(a) m lij − ui,x − uj ,x( )2
+ ui,y − uj ,y( )2[ ]1/ 2

≤ 0  for all i, j

(b) ui,x ≤ 1, ui,x ≥ 0 , ui,y ≤ 1, ui,y ≥ 0  for all i.

This nonlinear constrained optimization may be solved using the
well-known Augmented Lagrangian Multiplier algorithm (ALM)
[18]. Due to the simplicity of the merit function and constraints,
the gradient of the augmented Lagrangian may be explicitly
evaluated, which allows the use of a first-order algorithm, e.g., a
conjugate-gradient algorithm [19], for the outer minimization.
In addition, other constraints to implement esthetic conditions are
readily added to the minimization framework. For example, if the
desired base has a line of symmetry, one might require that two
nodes be each other’s reflection about a symmetry line of the
square. To avoid terminal vertices in the interior of the square
(which give rise to wrapped flaps as shown in figure 2), the
coordinates of the terminal vertices may be constrained to lie on
the boundary of the square. These and similar additional
constraints may be simply mixed into the augmented Lagrangian.
Another benefit to ALM is that at the end of the optimization,
active constraints — inequalities that are in fact equalities — are
identified by having nonzero Lagrangian multipliers. Active

constraints correspond to active paths; thus nonzero Lagrangian
multipliers identify primary valley folds of the crease pattern.
Once a pattern of nodes and active constraints is found that forms
a network of active polygons, each polygon may be subdivided
according to the universal molecule algorithm. This, too, is a
constrained optimization; each level of the solution is found by
maximizing the inset distance h subject to the reduced path
constraints:

lij − h cot α i + cot α j( ) − ′Ai (h) − ′Aj (h) ≤ 0  for all i,j.

While this problem could be solved by ALM, the constraints are
quadratic in h; thus, each equality can be solved analytically.
Since the number of nodes in a given active polygon is usually
rather small (polygons above order-6 are rare in practice), one can
simply evaluate the expression for h for each pair of nodes in turn
and select the largest value that still satisfies the other inequalities.
Alternatively, active polygons can be fractured into smaller
polygons by adding a stub to the subtree of size, length, and
location that create four active paths. In this case, we have four
equalities with four unknowns (the x and y coordinates of the new
node, the length of the stub, and the distance between the point of
attachment and the nearest node), which may be solved by
Newton-Raphson or equivalent algorithm.
After solving for the positions of all nodes, creation of additional
nodes (if desired) and identifying active paths, valley and
mountain creases are assigned as discussed in section 5.3. A
simple example will illustrate this process.
Figure 9 illustrates a very simple tree graph for a typical mammal
with four legs, a body, a head, and a tail. For simplicity in this
example, I have chosen all edges to have the same length.
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TailHead

Hind leg
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Figure 9. Planar graph for a six-flap base. Each edge of the graph
has a length of 1 unit in this example.

Since there are 6 nodes, there are 15 possible paths between
nodes; combining these constraints with four constraints for each
node (restricting the node to lie within the square), there are a total
of 39 inequality constraints. Application of ALM (or, in this case,
simple algebra) reveals that an optimum distribution of nodes is
the pattern shown in figure 10, which has a scale of
1/2√((121+8√179)/65) ≈ 0.267.
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Figure 10. Node pattern that satisfies the tree conditions for the
six-legged tree graph.

The active paths are illustrated by lines in figure 10, identifying
active polygons. Each polygon corresponds to a subgraph of the
original tree graph, as shown in figures 11 and 12. Note that



interior nodes of the tree graph correspond to vertices along active
paths; these interior vertices, as well as those created within
universal molecules radiate creases perpendicular to the active
paths.
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Figure 11. (Left). Planar graph with all nodes lettered. (Right)
Crease pattern with terminal vertices, internal vertices, and active
paths.
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Figure 12. The four active polygons for the six-legged base and
the planar graphs corresponding to each subbase.

Now the individual active polygons must be filled with creases
according to the universal molecule algorithm.
When all of the active polygons are filled with creases, one
obtains the pattern shown on the left in figure 13. Folding it up,
one obtains the base on the right, which has the same
configuration of flaps as the tree graph from which I began.
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Figure 13. Full crease pattern and six-legged base.

It should be emphasized that the outcome of this algorithm is an
origami base, not the final figure. The base has the right number
and size flaps, but it is still up to the origami designer to shape the
flaps into arms, legs, head, tail, et cetera. The techniques to do
such shaping are, however, widely known and available in the
origami literature.
6.2 Computational Implementation
The optimization of the terminal nodes and subsequent
computation of creases are readily amenable to computer
implementation using standard algorithms and conventional data
structures. I have implemented this algorithm in C++ in a program
called TreeMaker, using the ALM algorithm to perform the
constrained optimization with the Polak-Ribiere conjugate
gradient algorithm [19] for the outer minimization. Using this
program, which is available via ftp on the Internet [20], one can
construct origami bases of unprecedented complexity and
sophistication. Although the example above was relatively simple,
Figure 14 shows a real-world example: the tree graph for a six-
point buck deer. Application of the tree algorithm results in the
crease pattern shown on the right; folding on the crease lines gives
a base which may be shaped into the deer shown in the
photograph in figure 15. Performing the optimization of the
terminal nodes required less than 1 minute on an 80 MHz Power
Macintosh 601; computation of the creases was essentially
instantaneous. Considering that conventional trial-and-error
origami design of complex models can take anywhere from hours
to years, the potential effect of this algorithm on the field is
significant.

body

tail

hind leg hind leg

foreleg foreleg

neck

head

ears

antlers

Figure 14. (left) Stick figure for a deer. (Right) computed crease
pattern.

Once the creases are identified and assigned, there remains the
very practical problem of how to transform the crease pattern into
the base, that is, what is the order of folding? Although most
origami designers go to some effort to develop and present the
folding method as an ordered sequence, there is nothing inherent
in the algorithms presented here that would give the resulting base
a step-by-step folding sequence; and generally, the bases derived
by this method cannot be folded one crease at a time. Instead, the
paper must be precreased and then all creases brought together at
once.



Furthermore, there is rarely a transformation from the square to
the base that preserves facet flatness throughout the
transformation. There are moves in the origami repertoire that,
topologically speaking, cannot be completed with a finite number
of creases, such as the “closed sink” (a move plentiful in [3]),
which is equivalent to inversion of a cone — a known
impossibility. In practice, the transformation of a computed crease
pattern into an origami base, and thence into a figure as shown in
figure 15, remains a challenging endeavor.

Figure 15. Folded deer.

6.3 Comment
As a final note, a special class of tree graphs consists of those in
which all edges emanate from a single interior node. For such a
graph, the tree conditions simplify: the distance between two
terminal nodes must be greater than or equal to the sum of the
lengths of the edges connected to each node. This is equivalent to
the condition describing a dense packing of nonoverlapping
circles of varying size where the radius of each circle corresponds
to the length of the edge in the tree graph and the centers of the
circles must lie within a square. This similarity has been exploited
by several folders who have described origami design algorithms
by representing flaps with circular arcs and contours [10–12].
Even for tree graphs with multiple interior nodes, the use of
circles to represent terminal flaps aids in the visualization of the
base. To show this relationship, figure 13 superimposes circles on
the crease pattern where each circle represents a terminal flap of
the base.
If in addition to emanating from the same node, the edges of a tree
graph are all the same length, then the problem of designing a
base with N flaps is equivalent to the densest packing of N equal
circles, all of whose centers lie within a square. Since any such
circle packing can be circumscribed by a square that touches all of
the boundary circles, the problem is also equivalent to the densest
packing of N circles wholly within a square, which is a problem
that has seen some recent activity in its own right [21]. Implicit
within every optimal circle packing, there is an optimal origami
base and vice versa. It is interesting to note that only a handful of
the known densest circle packings have been realized as origami
designs — at least, to date.
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