
Parallizing the Push-Relabel Max Flow Algorithm

Victoria Popic
viq@mit.edu

Javier Vélez
velezj@mit.edu

ABSTRACT
We parallelized Goldberg’s push-relabel max flow algorithm
and its global update heuristic. We achieve a speedup of 2 for
the global update heuristic on wide rm f graphs when run on 8
processors. We also implemented a version of the global up-
date heuristic that can run concurrently with the parallel push-
relabel code. The best parallel push-relabel algorithm showed
a speedup of 2 on longer rm f graphs and outperformed Gold-
berg’s hipr code when run on 8 processors.

1. INTRODUCTION
In this paper we focus on the parallelization of the maximum
flow problem, which is a classical combinatorial problem with
many important applications (e.g network resource-allocation
and scheduling). The sequential algorithms for this problem
are usually divided into two groups: augmenting path algo-
rithms and preflow push-relabel algorithms. In this paper, we
focus on Goldberg’s push-relabel algorithm since it has been
shown to be the fastest sequential maximum flow algorithm in
practice [1]. It has also been shown that the algorithm per-
forms best when run with a global relabeling heuristic, which
is essentially a breadth first search. Therefore, we also focus
on parallelizing this heuristic operation.

The paper is organized as follows. In Section 2 we describe
Goldberg’s push-relabel algorithm and the global relabeling
heuristic used to improve its performance. In Section 3 we
present the parallelization scheme for the global relabeling
heuristic. Section 4 describes a scheme to run the global re-
labeling concurrently with the push-relabel algorithm. Sec-
tion 5 introduces several approaches taken to parallelize the
push-relabel algorithm itself. In Section 6 we also describe
a parallel lock-free algorithm derived from a variation of the
push-relabel algorithm by Hong [2]. The lockfree algorithm is
of theoretical importance since it only becomes pratical when
running on O(V) processors. Finally Section 7 presents the
results of our experimental studies.

2. PUSH-RELABEL ALGORITHM
We start by defining the maximum flow problem. We are given
a flow network, which is a directed graph G(V,E) with |V |= n
nodes and |E| = m edges and two special nodes: the source
s and the sink t. There is a positive capacity value c(v,w)

associated with each edge (v,w). The flow on G, is a real-
valued function f satisfying three constraints: (1) capacity
constraint - the flow along each edge does not exceed the ca-
pacity of the edge: f (v,w) <= c(v,w), (2) skew symmetry:
f (v,w) =− f (v,w), and (3) flow conservation at each node ex-
cept the source and the sink: sum(f(v,w)) = 0. The value of
the flow, | f |, is the net flow leaving the source or entering the
sink. We want to maximize | f |.

The push-relabel max flow algorithm has proven to be a
very fast and efficient way of computing the maximum flow
of a graph [3] [1]. The basic idea is to push as much flow as
possible from the source in one step. The algorithm relaxes
the flow conservation constraint through the idea of pre f low,
which allows a node v to store excess f low, excess(v). Nodes
with positive excess f low are called active nodes. Edges along
which we can push flow are called admissible. The algorithm
also associates a label with each node v, d(v), which repre-
sents a lower bound on the distance of this node from the sink.
The algorithm runs on the residual network, G f , which con-
sists of all the nodes and only the admissible edges and stops
when there are no more active nodes.

The basic algorithm consists of two simple operations: push
and relabel. Listing 1 and 2 show the pseudocode for each of
these operations. As the algorithm runs, the active nodes push
flow towards nodes one level below them. When a node is
unable to push any more flow but has a positive excess, it per-
forms a relabel operation. The discharge operation in listing
3 incorporates this functionality. Two commonly used heuris-
tics for the push-relabel are the global update and gap
heuristics. Both of these heuristics have been shown to greatly
increase running time performance [1]. In this paper we focus
on the global relabeling heuristic, which resets the distance
estimates of each node from the sink to their true value.

The fastest serial push-relabel in practice seems to be
Goldberg’s hipr code [1], which uses both global update
and gap heuristics. The hipr algorithm works as described
above. It keeps a lower-bound estimate of the distance la-
bel of each node and pushes flow from nodes with excess to
lower-distanced nodes through admissible arcs. It stores all
the nodes with the same distance label in a linked-list struc-

PUSH(u,v)
// Applicability: u is active, c f (u,v) > 0 and d(u) < d(v)
δ = min(e(u),c f (u,v))
f (u,v)← f (u,v)+δ

f (v,u)← f (v,u)−δ

excess(u) = excess(u)−δ

excess(v) = excess(v)+δ

Figure 1: PUSH operation

RELABEL(u)
// Applicability: u is active,
// ∀w ∈V, i f c f (u,w) > 0⇒ d(u)≤ d(w)
d(u)← min(d(w)|(u,w) ∈ E f)+1

Figure 2: RELABEL operation

DISCHARGE(u)
// Applicability: u is active
while excess(u) 6= 0

PUSH or RELABEL (u)

Figure 3: DISCHARGE operation

ture called bucket. There are n buckets in total for each possi-
ble distance from the sync. Periodically, the global update
is run to reset the distance estimates to their real values. It has
been shown [1] that the performance improves significantly
if the nodes with higher distances (further from the sink) are
discharged first (versus a FIFO order). Therefore, the algo-
rithm always pushes from the farthest nodes towards the sink
by keeping track of the currently highest distance label of an
active node, known as aMax. See [1] for further details and
a proof of why the algorithm converges to the correct maxi-
mum flow. The basic push-relabel has a running time of
O(V 2E) [1]. This can be improved to the hipr running time
of O(V 2√E) by following the highest-distance node discharge
ordering [1], and to O(V E log(V 2

E)) by using dynamic tree
structures [1].

It has been shown by profiling the sequential execution [4]
that the global updatecan take as much as 40% of the total
work. Figure 4 shows the amount of time the hipr algorithm
spends on the heuristic on several graph sizes; we can see that
at least 1

3 of the time is spent running the global update.
This suggest that increasing the performance of the global
update step can significantly improve the performance of the
overall push-relabel algorithm.

3. PARALLEL GLOBAL-UPDATE

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

b

T
im

e
(s

ec
)

Global Update Heuristic Time
Frame Graph, a=40

Total Time
Global Update Time

Figure 4: Global Heuristics Times Versus Total Running Time for
hipr

The global update is in escense a backwards breadth first
search over the current residual graph, G f . We can parallelize
this breadth first search by using the Bag and the Pennant data
structures introduced by Leiserson and Shardl, which ensure a
fast parallel iteration over the set of stored elements [5]. A
Bag is a dynamic unordered set of elements implemented us-
ing the auxiliary Pennant data structure, which is a tree of 2k

nodes, where k is a nonnegative integer. The Pennant struc-
ture allows us to efficiently union and split the elements of a
Bag.

We implemented our parallel global update for hipr by
keeping track of two Bags for layers i and i+1 of the breadth
first search. We process all the nodes in layer i in parallel by
scanning all their neighbors in the residual graph - all nodes in
layer i + 1 which have admissible edges to the nodes in layer
i - and store these neighbors in the layer i + 1 Bag, setting
their distance from the sink. Once we are done with layer i
Bag, we swap the two Bags and continue until we reach the
source. We start with the sink as the only element in the layer
0 Bag. We use a cilk reducer on the i + 1 Bag to correctly
serialize the insertions of elements into the Bag. While a stan-
dard breadth first search can be done in parallel this way, the
global update heuristic actually edits the value of the node
in such a way that we no longer have a benign race when vis-
iting nodes (we do not want duplicate nodes in our Bag). We
solve this issue by acquiring a fine-grain lock on a per-node
basis to ensure that we only visit each node once. In order
for the buckets of hipr to contain the linked list of appropriate
nodes at the end of the global update, we maintain the node
pointers when adding elements to a Bag and merging Bags.

4. CONCURRENT GLOBAL-UPDATE
The global update needs to run periodically during the
push-relabel algorithm. If the push-relabel algorithm is par-
allelized, then all the processors would need to be suspended
in order to run the global update. Anderson [4] has pre-
sented a correct method for running the global update
concurrently with a parallel implementation of the push-
relabel algorithm. This method ensures that the valid labeling
condition of Goldberg’s algorithm is met. The valid labeling

condition states that given any vertex v, it must be the case that
d(v) ≤ d(w)+ 1 for all the edges (v,w) in the residual graph
G f and a violation of this condition might result in incorrect
results. They associate a wave number with each node, which
stores the number of times the node was globally relabeled.
It is only allowed to push flow between nodes with the same
wave number and the two nodes must be both locked when the
push occurs. It is also important to make sure that in any dis-
tance label update the node’s distance label is never decreased
. The relabel operation needs to lock the node being relabeled,
similarly the global update also needs to lock each node
it reaches. There are two global variables to store the cur-
rent global update wave number and the current level in the
breadth first search tree. Further information and correctness
proofs can be found in [4].

We have implemented Anderson’s concurrent global
update. This heuristic runs periodically after at least n dis-
charges occur.

5. PARALLEL PUSH-RELABEL
The idea behind parallelizing push-relabel is to find a way to
discharge active nodes in parallel. Discharging nodes in par-
allel (as well as running the concurrent global update) in-
troduces many races. In order to avoid them, locks need to be
used in several sections of the code. For example, when flow
is pushed between two nodes, both nodes are locked in order
to update the flow excess and residual capacity values and pre-
vent a concurrent relabeling of one of the nodes. The node
being relabeled needs to be locked throughout the entire oper-
ation in order to update its distance label and prevent flow from
being pushed to it creating an admissible arc at a lower level.
Adding newly activated nodes to the buckets, also requires a
locking mechanism or an atomic operation. Finally, we also
need to ensure that the updates to the global variables (such as
aMax) are performed correctly (a lock is currently used in all
the implementations to achieve this).

The following subsections describe several different algo-
rithms used to parallelize push-relabel.

5.1 Discharge-Chain
The sequential code walks through the buckets from highest to
lowest level, discharging the active nodes. We would like these
discharges to run in parallel. In order to avoid excessive Cilk
overhead, we would like to provide sufficient work for each
processor; however, one discharge operation is a very small
amount of work. The amount of nodes in each separate bucket
can also be very small; therefore, traversing each bucket in
parallel and then synching is also not a good option.

One way of providing more work to each processor is to spawn
a discharge and let the processor proceed discharging its newly
activated node with the highest distance label, if one exists. We
call this modified discharge operation discharge− chain. The
processor should only proceed with discharging this node, if
the distance label of this node is higher than the current aMax
value (i.e. the current highest distance of an active node), in

MAINdischarge−chain()
while ActiveNodeSet 6= /0

u← maxd(v){v|v ∈ ActiveNodeSet}
cilk_spawn DISCHARGE-CHAIN(u)

Figure 5: Main Loop for DISCHARGE-CHAIN Algorithm

MAINcoarsened−discharge()
while ActiveNodeSet 6= /0

// Grab the top T active nodes
a← buckets[top T elements]
cilk_for u ∈ a

DISCHARGE(u)

Figure 6: Main Loop for COARSENED-DISCHARGE Algorithm

order to guarantee an approximate highest-level first traversal.
Listing 5 shows the discharge loop.

Each bucket is a linked list of nodes with pointers to the first
and last nodes. In order to speed up the transfer of nodes ac-
tivated by a worker into the buckets, each processor keeps a
local linked list of newly activated nodes and appends this
list, when it’s done, to the appropriate bucket by a simple node
pointer manipulation. Since a discharge for a node v can only
activate nodes one distance label below v (d(v)− 1), we are
guaranteed to accumulate nodes in the local list for only one
bucket (as long as this list is transfered back before any rela-
beling).

Two versions of this algorithm have been implemented. One
that syncs the processors periodically to run the global rela-
bel update and a second version which runs the global update
concurrently. Running the concurrent global update seems to
improve performance significantly.

5.2 Coarsened-Discharge
The second parallelization approach first gathers a batch of ac-
tive nodes to discharge into an array starting from the highest-
level bucket and then runs a cilk_for loop over these nodes (see
Listing 6). The number of nodes to gather, T , can be varied to
improve performance.

This algorithm does not need to explicitly sync the nodes for
the global update heuristic, which is run after the cilk_ f or
loop, if appropriate.

5.3 Local Queues
What we want is to provide a batch of active nodes to each
processor instead of just running one discharge. Anderson
and Setubal [4] and later Bader [6] have proposed paralleliz-

ing push-relabel using the idea of a threadpool: each processor
sends tasks to and receive tasks from a global workpile. The
size of the tasks assigned to the processors depends on the
work available and needs to be adjusted dynamically. We have
implemented this algorithm.

In this scheme, each processor has two local queues: an in−
queue and an out−queue. A processor discharges active nodes
from its in-queue and places any newly activated nodes in its
out-queue. When a processor runs out of work, it grabs a new
batch of nodes from the global queue and stores it in the in-
queue. When the out-queue reaches a certain capacity, all its
nodes are transfered to the global queue. For load-balancing,
the number of vertices transferred in and out needs to vary
throughout the execution of the program depending on how
many processors are idle. A processor is considered idle if its
in-queue is empty and the global queue and its out-queue are
empty.

Since the processing of vertices must occur highest-label first
rather than in FIFO order, similarly to Bader[2], we divided
the global queue and the local in-queue into buckets corre-
sponding to the distance to the sink. When transferring nodes
from the global queue to the local queue, we transfer the nodes
from the highest buckets first. Similarly, the nodes in the high-
est buckets of the in-queue are discharged first. This ensures
that the nodes are processed approximately in the highest-label
first order.

The current implementation of this algorithm does not run the
global heuristic concurrently; therefore, each thread needs to
be interrupted and synched with the global queue in order to
run the global heuristic. However, a parallel of the global
heuristic can be run.

6. PARALLEL LOCKFREE
In contrast to the hipr algorithm, we also implemented the
lockfree push-lift algorithm in [2]. In the original publish-
ing of the algorithm it was stated that locks were still needed
in order to verify the termination condition. We improved the
algorithm by creating a completely lockfree parallel maximum
flow algorithm using the push and lift operation defined in
[2]. Termination is verified by a careful bookkeeping of when
a node losses all excess or gains excess after being excess free.
This bookkeeping is done using atomic fetch-and-add op-
erations in order to check when no nodes have any excess flow
– in which case the algorithm has terminated with the max-
imum flow stored as excess in the sink. We keep a current
correct count of the number of nodes with excess at any point
in time. Each concurrent process can check this value and de-
cide to stop when it reaches 0.

It is worth noting that the lockfree push-lift algorithm did
not utilize any heuristics when deciding which nodes to push.
In fact, all push and lift operations per node can be done in
parallel. The serial running time of the push-lift is O(V 2E)
which is slower than hipr by a factor of O(

√
E). In section

6.1 we detail how we improved the orders of push and lift

PR-NODE-LOOP(u)
// This is run in parallel for each node u /∈ {sink,source}
while excess(u) > 0

for v ∈ {(u,v) ∈ G & c f (u,v) > 0}
if d(v) = d(u)+1

PUSHlock f ree(u,v)

if excess(u) > 0
lifted = UPLIFT(u)
if lifted = FALSE

return
else

// u no longer active
return

Figure 7: Node Loop For Lockfree push-relabel Algorithm

MAINpr−lock f ree()
while activenodecount > 0

cilk_for i ∈V
PR-NODE-LOOPlock f ree(vi)

flow = excess(sink)

Figure 8: Lockfree push-relabel Algorithm

operations in order to reduce the number of nodes idling as
well as try to always push flow from nodes farthest from sink
towards the sink.

Starting with the push-lift algorithm, we modified the op-
erations to mimic those of the hipr algorithm when run with-
out the global update and gap heuristics. Listing 8 shows
the code for our lockfree push-relabel algorithm. This algo-
rithm can be run entirely in parallel, giving us a O(V) potential
parallelism when run on O(V).

6.1 Order Heuristics
Given that the global update and gap are an important part
of the performance of the push-relabel max flow algo-
rithms, we investigated how to order push and relabel op-
erations in our lockfree push-relabel algorithm. We created
a set of thread local strata for each of our concurrent threads.
A strata stores a partially ordered set of nodes within it. The
strata allows us to determine which nodes have distances
from the sink in the top half of all the distances in the local
strata. Figure 11 represents the structure of our strata.

Figure 12 shows the main algorithm loop which allows us
to efficiently iterate over all the nodes at the top of all local
strata. We create a noderange set which maps the top halves
of all strata into a compact range of integers by simply order-
ing our strata and enumerating the location of nodes which
are in top or within the top num-active-layers layers. This
noderange represents the top distnaced active nodes com-

PUSHlock f ree(u,v)
// Applicability: excess(u) > 0
δ = min(excess(u),c f (u,v))
FETCH-AND-SUBTRACTatomic(f (u,v)−δ)
FETCH-AND-ADDatomic(f (v,u)+δ)
eu = SUBTRACT-AND-FETCHatomic(excess(u)−δ)
evold = FETCH-AND-ADDatomic(excess(v)+δ)
if evold = 0 & δ > 0 & u /∈ {source,sink}

// v gained positive exces sand became active
FETCH-AND-ADDatomic(active-node-count +1)
LOCAL-ADD-TO-STRATA-OUTSET(v)

if eu = 0 & δ > 0
// u just became inactive
FETCH-AND-SUBTRACTatomic(active-node-count−1)

Figure 9: Lockfree push Operation

UPLIFTlock f ree(u)
// Applicability: excess(u) > 0 & ∀(u,v)|c f (u,v) > 0,
// d(u)≥ d(v)
// First, find min distance of admissible arc neighbors
h← min{d(v)|(u,v) ∈ G & c f (u,v) > 0}
if {v|(u,v) ∈ G & c f (u,v) > 0}= /0

return f alse
else

d(u)← h+1
returntrue

Figure 10: Lockfree “relabel” Operation

pactly, and we can now iterate over these nodes in parallel
using a cilk_for statement.

It is important to notice that our algorithm now iterates in
phases, where each phase the top half of active nodes are dis-
charged (repeated calls of push) and any new active nodes
are added to the local strata outset. After a phase is com-
plete, the layers of all the strata are cleared (not including
the outset) and then re-filled from elements within the outset
of each strata.

7. RESULTS
We tested our algorithm using the following two types of
graphs.

• Rm f graphs : these graphs are parametrized by two num-
ber (a,b). The graphs consists of b square grids (frames) of a2

nodes each connected to each other in a sequence, such that,
each node in the frame is connected to one unique node in the
next layer. The source is in a corner of the first frame and the
sink is in a corner of the last frame. These graphs were used

STRATA:
// number of layers in array
long num-layers
// the distance of lowest layer no including bottom
long lowest-layer
// max distance of any node in outset
long max-distance
// min distance of any node in outset
long min-distance
std::vector<node*> top
std::vector<node*>* layers
std::vector<node*> bottom
// num elements in layers not including outset
long num-elements
// nodes which are locally in this strata
// but are not in layers yet
std::vector<node*> outset
// num layers which will be operated in parallel
// not including top
long num-active-layers
// bookeeping variable with the last
// noderange mapping to this strata
long node-range-last

Figure 11: The strata data structure

MAINstrata()
node-range← COMPUTE-NODE-RANGE-FROM-STRATA()
while activenodecount > 0

cilk_for nr-id ∈ node-range
node u← GET-NODE-FROM-NODE-RANGE(nr)
PR-NODE-LOOP(u)

CLEAR-ALL-STRATA-LAYERS()
FILL-INDIVIDUAL-STRATA-LAYER-FROM-OUTSET()
node-range← COMPUTE-NODE-RANGE-FROM-STRATA()

flow← excess(sink)

Figure 12: The main function to utilize the strata structure

Figure 13: Parallel global-update heuristic on rm f (a = 100,b = 100)

Figure 14: Parallel global-update heuristic on rm f (a = 100,b = 100)
with extra work

in the original hipr algorithm and are described in [?]. We
differentiate between wide rmf graphs, rm f w, and long rmf
graphs, rm f l.

• Tree graphs : these graphs are parametrized by three num-
bers (L,d,m). They consist of a d-degree tree of L layers.
There are m middle line graphs connected from the last layer
of the tree. Lastly, the line graphs are “collected” back into a
single node (symetric to the tree). The source is at one end of
the tree and the sink at the other.

7.1 Global Relabeling Heuristic
We achieve a speedup of 2 for the parallel global update
heuristic on wider rm f graphs when run on 8 processors.
However, Cilkview reports a higher parallelism on these
graphs. For example, when run on an rmf graph with
1,000,000 nodes and 4,950,000 edges (a = 100, b = 100), the
reported parallelism is 36.34 and the burdened parallelism is
14.14, while the speedup is only 2 on 8 processors. Figure 13
generated by Cilkview shows the performance of the parallel
global-update on this graph. Given the burdened parallelism,

copy # update running time (s)
1 16.351
2 13.556
3 18.031
4 18.963
5 18.166
6 17.479
7 17.607
8 11.704

Table 1: Sequential global-update run on 8 independent copies

we should expect a speedup of 4 on 8 processors. In order
to determine whether the lower speedup could be caused by a
memory bandwidth problem, we ran the following two tests.
The first test consisted of running 8 independent copies of the
sequential code at the same time. When only one version of
the sequential code is running, the parallel global-update takes
a total of 7.848 s. Table 1 shows the amount of time that each
of the 8 independent copies took when ran at the same time.
Comparing to the time taken by only one copy of the code
running alone, we see that the time roughly doubles when the
copies are run simultaneously. This factor 2 slowdown might
account for the factor of 2 decrease in speedup. To confirm
that, the second test was to insert extra trivial work (with no
effect on the computation) per node of a given level. Figure 14
shows that when extra work is added, the speedup increases to
4 and the burdened parallelism now becomes the limiting fac-
tor. The reason why we see a low burdened parallelism might
be the use of reducers and the fact that the number of nodes
at a given level of the residual graph can become small after
a certain stage of the push-relabel algorithm, causing a high
Cilk overhead.

Since the global-update heuristic accounts for about 1
3 of the

total time of the hipr algorithm, getting a speedup of 2 for the
heuristic should improve the total running time by a factor of
6
5 .

7.2 Parallel Push-Relabel
Table 2 summarizes the results for the described variations
of the parallel push-relabel. The best results were seen for
the discharge-chain algorithm when run with the concurrent
global-update heuristic on rm f l graphs. When run on 8 work-
ers, this algorithm outperforms hipr on the rm f l graph pre-
sented in the table. The performance of each algorithm is ana-
lyzed in more details below.

7.2.1 Discharge-Chain
Two versions of the discharge-chain algorithm were evaluated:
one that syncs all the threads to perform a synchronous global-
update and one that runs the global-update concurrently. Run-
ning Cilkview on the first version reports sufficient parallelism
(33.56) but a very low burdened parallelism (mostly around 1),
which yields no speedup and indicates that there is a signifi-
cant overhead in performing the spawn and sync operations
and possibly some lock contention, see Figure 15. All threads

have to be suspended and synched for the synchronous global
update, which slows down the parallel code significantly and
creates more Cilk overhead. However, with this synchroniza-
tion step removed using the concurrent heuristic, the code per-
forms much better.

The concurrent global-update improves performance signifi-
cantly and we can actually observe a speedup of roughly 2 on 8
processors. Figure 16 shows the running time of this algorithm
on rm f l and rm f w graphs. We found that the performance is
better on rm f l graphs. Since we need at least 2 workers to run
the algorithm (one worker needs to be dedicated to running the
concurrent heuristic), we could not obtain Cilkview results.

7.2.2 Coarsened-Discharge
The size of the batch of accumulated nodes has been varied to
improve performance and was set to 64 for the reported runs.
This is because for several instances of rmf graphs it was found
that on average there are only about 50-60 active nodes inside
all of the buckets when the cilk_ f or loop is run; therefore,
increasing the number of nodes to spawn on has no effect.
Running cilk_ f or on such a small number of nodes creates
a significant overhead as can be seen in Figure 17 generated
by Cilkview. Although the parallelism value of 48.29 reported
by Cilkview for the cilk_ f or portion of the main loop is suf-
ficiently high, the burdened parallelism is very low, 0.87, and
could be caused by the small number of active nodes in the
buckets, as well as some locking overhead.

7.2.3 Local Queues
We currently have a working implementation of the described
local queues algorithm; however, it is highly not optimized.
There is currently no dynamic adjustment of the parameters
controlling the size of the tasks transferred between the global
queue and the local queues, which can create significant over-
head and result in poor load-balancing. Similarly, the transfer
of the nodes from the local queues to the global queue and vice
versa can be significantly improved by changing the represen-
tation of the queue data structure.

We have observed a wide range of results when running this al-
gorithm on different graphs and with different settings for the
size of the tasks. For the test graphs presented in Table 2, we
saw no speedup when run on multiple processors. This results
can be due to lock overhead and lack of task size adjustment.
However, this approach does look promising, since it actually
can provide a reasonable amount of work to each processor, if
optimized for implementation and design.

7.3 Lockfree push-relabel
The hipr algorithm outperformed all of our lockfree imple-
mentations, including those which tried to order the inputs
such that the top half of active nodes were discharged in par-
allel. We believe the reason for this improved performance is
that the hipr algorithm correctly takes into account discharge
dependencies when calculating the discharge order. The lock-
free algorithms essentially take a snapshot of the discharge

rmfl

algorithm sequential parallel speedup
discharge-chain 126.63 108.98 1.16

discharge-chain-conc 131.8 54.07 2.44
coarse-discharge 85.83 116.79 1.16

local-queues 176.85 166.31 1.064

rmfw

discharge-chain 94.44 86.11 1.1
discharge-chain-conc 116.35 65.57 1.77

coarse-discharge 102.24 133.3 0.77
local-queues 186.8 202.51 0.92

Table 2: Running times (in seconds) of the parallel push-relabel algo-
rithms. Parallel times were obtained on 8 workers. The rm f l graph
has parameters a = 50 and b = 1000 and a total of 2500000 nodes and
12297500 edges; the rm f w graph has parameters a = 200 and b = 50
and a total of 2000000 nodes and 9920000 edges. The hipr algorithm
runs in 88.77 s on rm f l and 126.66 s on rm f w

Figure 15: Parallel push-relabel using discharge-chain on rm f (a =
50,b = 1000)

Figure 16: Parallel push-relabel using discharge-chain on rm f (a =
50,b = 1000) with concurrent global-update

Figure 17: Parallel push-relabel using coarsened-discharge on
rm f (a = 50,b = 1000)

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

10
8

10
10

number of nodes

nu
m

be
r

of
 P

U
S

H
 o

pe
ra

tio
ns

Work Comparison Lockfree HI−PR Algorithms

HI−PR
HI−PR

parBFS

Lockfree
HI−PR

no heuristics

Figure 18: Amount of push operations done by lockfree and hipr
algorithms

order and do not update this ordering while discharging all
the nodes within the top half of the active set. This coars-
ened ordering may degrade performance because of bad dis-
charge node interactions. Furthermore, none of our lockfree
algorithm utilize the global update or gap heuristics. Fig-
ure 18 shows that the amount of push operations performed by
our lockfree algorithm is much more than work done by hipr
(even without the global update or gap heuristics). It is
worth noting that we improved upon the lockfree algorithm
by Hong [2] and implemented a fully lockfree push-relabel
alogrithm. The algorithm is of theoretical interest since it
can take full advantage of O(V) processors because each node
can be processed completely in parallel and without lock con-
tention. To our knowledge this is the first fully lockfree im-
plementation of a push-relabel algorithm which runs in
O(V 2E) time [2].

8. FURTHER WORK
All the presented algorithms need to be further optimized. Es-
pecially the local-queue algorithm requires more tuning. The
concurrent global update needs to be incorporated into all the
existing algorithms for comparison. More input graph vari-
ety needs to be generated, in order to establish which graphs

lend themselves to a better parallelization. It would be inter-
esting to explore alternatives to locking and algorithms other
than hipr to parallelize.

9. REFERENCES
[1] B. V. Cherkassky and A. V. Goldberg, “On implementing

push-relabel method for the maximum flow problem,”
Stanford University, Stanford, CA, USA, Tech. Rep.,
1994.

[2] B. Hong, “A lock-free multi-threaded algorithm for the
maximum flow problem,” in IPDPS. IEEE, 2008, pp.
1–8.

[3] A. V. Goldberg and R. E. Tarjan, “A new approach to the
maximum flow problem,” in STOC ’86: Proceedings of
the eighteenth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM, 1986, pp.
136–146.

[4] R. Anderson and J. Setubal, “On the parallel
implementation of goldberg’s maximum flow algorithm,”
in 4th Annual Symbosium Parallel Algorithms and
Architectures (SPAA-92), San Diego, CA, July 1992, pp.
168–177.

[5] C. E. Leiserson and T. B. Schardl, “A work-efficient
parallel breadth-first search algorithm (or how to cope
with the nondeterminism of reducers),” 2010.

[6] D. Bader and V. Sachdeva, “A cache-aware parallel
implementation of the push-relabel network flow
algorithm and experimental evaluation of the gap
relabeling heuristic,” in The 18th ISCA International
Conference on Parallel and Distributed Computing
Systems (PDCS 2005), September 12-14, 2005.

