

A Parallel Implementation of the Push-Relabel
Max-Flow Algorithm with Heuristics

6.884 Final Project, Spring 2010
 Victoria Popic, Javier Velez

Background
● Applications

resource allocation, scheduling, linear programming problems,
graph problems (max bipartite matching)

● Algorithms
- augmenting paths (Ford and Fulkerson, Edmonds-Karp, Dinitz)

- preflow-push (Goldberg and Tarjan) – best in practice Goldberg's
push-relabel hipr algorithm

Max-Flow Push-Relabel Algorithm
● G = (V, E), s, t; c(u, v); f(u, v); |f|

● preflow: allow excess flow at a vertex

● assign a distance from sink value to each vertex; d(s) = |V|, d(t) = 0

● ordering for discharge: FIFO / LIFO; highest distance nodes first
(best)

RMF Graphs Parametrized by
(a,b)

a

a

b

Trees Parametrized by (L, d, m)

d

L

. . .

m L

d (L-1)

HI-PR (Goldberg) Data Structures

node

d
excess
* prevNode
* nextNode

bucket

* active
* inactive

buckets

bucket1

* active

* inactive

active nodes, d = 1

Global Relabeling Heuristic
● backwards BFS from sink: computes exact distances of nodes from

the sink

● updates buckets and node data (distance and current arc)

for each (node i : inactive and active list of bucket k)

for all neighbors j s.t. (j, i) is an admissible arc

update j: j.d = k+1, j.current = j.first

if(j.excess > 0)

 add j to (k+1) bucket’s active list

else

 add j to (k+1) bucket’s inactive list

Global Heuristic Time

Parallel Global Relabeling
Heuristic with Pennants and Bags

● use Bag reducers to store the nodes in the buckets during
search (4 Bag reducers for 2 levels of active and inactive
lists)

● after we’re done computing layer k, set the pointers of bucket
k to the nodes in the active and inactive reduced bag

● we need to maintain a node chain inside our bags

– modify bag’s INSERT(node) and MERGE(bag) to
maintain pointers between all the nodes inside the
bag

● race: when checking if a node has been visited already, use
atomics/locks to avoid duplicates in the buckets

Parallel Global Relabeling Results

● rmf graph (a=100, b=100) |V| = 1,000,000, |E| = 4,950,000

● global update time: serial = 7.848 (s), parallel = 3.932 (s)
speedup = 2

Cilkview Results

Parallelism = 36.34

Burdened Parallelism = 14.14

Speedup Estimate

 2 procs: 1.79 - 2.00

 4 procs: 2.94 - 4.00

 8 procs: 4.34 - 8.00

 16 procs: 5.71 - 16.00

 32 procs: 6.77 - 32.00

Testing for Memory
Bandwidth: extra work

Parallelism = 25.74Parallelism = 36.34

Testing Memory Bandwidth: Running
8 Independent Copies of Serial Code

● 1 copy serial code alone: 7.848 (s)

● 8 independent copies: accounts for factor of 2
slowdown (i.e. speedup of 2 instead of 4)

Concurrent Global Relabeling
Heuristic

● all processors have to be suspended in order to do global relabeling
– instead we should run it concurently with push-relabel

● Anderson and Setubal '92 introduced the concept of a global
relabeling wave

● each vertex stores a wave number – the global-relabeling wave that
most recently updated it

● we only push flow between vertices with same wave number; both
nodes need to be locked

● no distance relabeling operation should decrease the distance label
of a node; node should be locked during relabel and global-
relabeling operations

Parallel Push-Relabel
● parallel discharge in approximate highest-

label first order:
– discharge-chain

– coarsened-discharge

– local-queues

[keep a local list of activated nodes]

● lock-free push-relabel

Discharge-Chain
● spawn a discharge-chain: let the processor proceed

discharging its newly activated node with the highest
distance label – if it exists and if its distance is >= to the
global highest distance of an active node

Coarsened-Discharge
● gather a batch of active nodes to discharge into an array

starting from the highest-label bucket, run a cilk_for loop
over these nodes

● number of nodes gathered, T, can be varied to improve
performance

In-Out Local Thread Queues
(Anderson and Setubal '92; Bader '06)

● each thread has a local input queue of buckets and a
local output queue

● threads grab active nodes to discharge from global
buckets and place newly activated nodes into their local
output queue

● when output queue is filled, the nodes in the output
queue are transfered back to the global buckets

● Variables (need to be adjusted dynamically):

– thr_in = how many active nodes to grab

– thr_out = size of the output queue / when to sync
with the global buckets

*current implementation needs to be optimized

In-Out Local Thread Queues

ACTIVE NODES

ACTIVE NODESGlobal
buckets

current_worked_id

Local
Buckets

Input
queue

Ouput
queue

thr_in

thr_out

Parallel Push-Relabel Results

Running times (in seconds) of the parallel push-relabel algorithms.
● Parallel times were obtained on 8 workers.
● rmfl grpah, a=50 and b = 1000, has 2,500,000 nodes and 12,297,500 edges;
 rmfw graph, a=200 and b=50, has 2,000,000 nodes and 9,920,000 edges.

● The hipr algorithm runs in 88.77 s on rmfl and 126.66 s on rmfw

algorithm sequential parallel speedup

rmfl discharge-chain
discharge-chain-concurrent
coarsened-discharge
local-queues

126.63
131.8
85.83
176.85

108.98
54.07
116.79
166.31

1.16
2.44
1.16
1.064

rmfw discharge-chain
discharge-chain-concurrent
coarsened-discharge
local-queues

94.44
116.35
102.24
186.8

86.11
65.57
133.3
202.51

1.1
1.77
0.77
0.92

Discharge-Chain Results

Cilkview plot: speedup for parallel push-relabel using discharge-
chain on rmf(a = 50, b = 1000) without concurrent global-relabeling

Best: Discharge-Chain with
Concurrent Global-Relabeling

Parallel push-relabel using discharge-chain with concurrent global-
relabeling: speedup of ~2 on rmfl graphs

Coarsened-Discharge Results

Cilkview plot: speedup for parallel push-relabel using coarsened-
discharge on rmf(a = 50, b = 1000) without concurrent global-
relabeling

Lock-Free Push-Relabel (Hong'08)

● Push only to the 'lowest' neighbor

● Lift yourself if no lower neighbor

● Done completely in parallel (per node!)

● Except Termination is a problem

– Must figure out when no node has any excess

– This now requires a barrier (aka a Lock!)

● Oh, and tons of Compare-And-Swap ops.

Lock-Free: Exactly How Bad?

● Original Push-Relabel : O (N2 E)

● “Lock Free” (without termination): O (N2 E)

● Highest Active Nodes First (hi_pr): O (N2 E1/2)

● Tarjan Dynamic Trees: O (N2 log(N2 / E))

● E1/2 Slower, but potentially N Parallelism

Lock-free: Push-Uplift

Lock-Free: Order Heuristic –
STRATA Data Structure

Lock-Free Results

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

