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Background
● Applications

resource allocation, scheduling, linear programming problems, 
graph problems (max bipartite matching)

● Algorithms
- augmenting paths (Ford and Fulkerson, Edmonds-Karp, Dinitz)

- preflow-push (Goldberg and Tarjan) – best in practice Goldberg's 
push-relabel hipr algorithm 



  

Max-Flow Push-Relabel Algorithm
● G = (V, E ), s, t; c(u, v); f(u, v); |f|

● preflow: allow excess flow at a vertex

● assign a distance from sink value to each vertex; d(s) = |V|, d(t) = 0

● ordering for discharge: FIFO / LIFO; highest distance nodes first 
( best)



  

RMF Graphs Parametrized by 
(a,b)
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Trees Parametrized by ( L, d, m )
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HI-PR (Goldberg) Data Structures
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Global Relabeling Heuristic
● backwards BFS from sink: computes exact distances of nodes from 

the sink

● updates buckets and node data (distance and current arc)

for each (node i : inactive and active list of bucket k)

for all neighbors j s.t. (j, i) is an admissible arc

update j: j.d = k+1, j.current = j.first

if(j.excess > 0)

       add j to (k+1) bucket’s active list

else

       add j to (k+1) bucket’s inactive list



  

Global Heuristic Time



  

Parallel Global Relabeling 
Heuristic with Pennants and Bags

● use Bag reducers to store the nodes in the buckets during 
search   (4 Bag reducers for 2 levels of active and inactive 
lists)

● after we’re done computing layer k, set the pointers of bucket 
k to the nodes in the active and inactive reduced bag 

● we need to maintain a node chain inside our bags

– modify bag’s INSERT(node) and MERGE(bag) to 
maintain pointers between all the nodes inside the 
bag

● race: when checking if a node has been visited already, use 
atomics/locks to avoid duplicates in the buckets 



  

Parallel Global Relabeling Results

● rmf graph (a=100, b=100) |V| = 1,000,000, |E| = 4,950,000

● global update time: serial = 7.848 (s), parallel = 3.932 (s)
speedup = 2

Cilkview Results

Parallelism = 36.34

Burdened Parallelism = 14.14

Speedup Estimate

  2 procs:  1.79 - 2.00

  4 procs:  2.94 - 4.00

  8 procs:  4.34 - 8.00

  16 procs:  5.71 - 16.00

  32 procs:  6.77 - 32.00



  

Testing for Memory 
Bandwidth: extra work

Parallelism = 25.74Parallelism = 36.34



  

Testing Memory Bandwidth: Running 
8 Independent Copies of Serial Code

● 1 copy serial code alone: 7.848 (s)

● 8 independent copies: accounts for factor of 2 
slowdown (i.e. speedup of 2 instead of 4)



  

Concurrent Global Relabeling 
Heuristic 

● all processors have to be suspended in order to do global relabeling 
– instead we should run it concurently with push-relabel

● Anderson and Setubal '92 introduced the concept of a global 
relabeling wave

●  each vertex stores a wave number – the global-relabeling wave that 
most recently updated it

● we only push flow between vertices with same wave number; both 
nodes need to be locked

● no distance relabeling operation should decrease the distance label 
of a node; node should be locked during relabel and global-
relabeling operations



  

Parallel Push-Relabel 
● parallel discharge in approximate highest-

label first order:
– discharge-chain

– coarsened-discharge

– local-queues

[keep a local list of activated nodes]

● lock-free push-relabel



  

Discharge-Chain
● spawn a discharge-chain: let the processor proceed 

discharging its newly activated node with the highest 
distance label – if it exists and if its distance is >= to the 
global highest distance of an active node 



  

Coarsened-Discharge
● gather a batch of active nodes to discharge into an array 

starting from the highest-label bucket, run a cilk_for loop 
over these nodes

● number of nodes gathered, T, can be varied to improve 
performance



  

In-Out Local Thread Queues 
(Anderson and Setubal '92; Bader '06)

● each thread has a local input queue of buckets and a 
local output queue

● threads grab active nodes to discharge from global 
buckets and place newly activated nodes into their local 
output queue

● when output queue is filled, the nodes in the output 
queue are transfered back to the global buckets

● Variables (need to be adjusted dynamically): 

– thr_in = how many active nodes to grab    

– thr_out = size of the output queue / when to sync 
with the global buckets

*current implementation needs to be optimized



  

In-Out Local Thread Queues 
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Parallel Push-Relabel Results

Running times (in seconds) of the parallel push-relabel algorithms.
● Parallel times were obtained on 8 workers. 
● rmfl grpah, a=50 and b = 1000, has 2,500,000 nodes and 12,297,500 edges; 
 rmfw graph, a=200 and b=50, has 2,000,000 nodes and 9,920,000 edges.

● The hipr algorithm runs in 88.77 s on rmfl and 126.66 s on rmfw

algorithm sequential parallel speedup

rmfl discharge-chain
discharge-chain-concurrent
coarsened-discharge
local-queues

126.63
131.8
85.83
176.85

108.98
54.07
116.79
166.31

1.16
2.44
1.16
1.064

rmfw discharge-chain
discharge-chain-concurrent
coarsened-discharge
local-queues

94.44
116.35
102.24
186.8

86.11
65.57
133.3
202.51

1.1
1.77
0.77
0.92



  

Discharge-Chain Results

Cilkview plot: speedup for parallel push-relabel using discharge-
chain on rmf(a = 50, b = 1000) without concurrent global-relabeling



  

Best: Discharge-Chain with 
Concurrent Global-Relabeling

Parallel push-relabel using discharge-chain with concurrent global-
relabeling: speedup of ~2 on rmfl graphs



  

Coarsened-Discharge Results

Cilkview plot: speedup for parallel push-relabel using coarsened-
discharge on rmf(a = 50, b = 1000) without concurrent global-
relabeling



  

Lock-Free Push-Relabel (Hong'08)

● Push only to the 'lowest' neighbor

● Lift yourself if no lower neighbor

● Done completely in parallel ( per node! )

● Except .... Termination is a problem

– Must figure out when no node has any excess

– This now requires a barrier ( aka a Lock! )

● Oh, and tons of Compare-And-Swap ops.



  

Lock-Free: Exactly How Bad?

● Original Push-Relabel : O ( N2 E )

● “Lock Free” ( without termination ): O ( N2 E )

● Highest Active Nodes First ( hi_pr ): O ( N2 E1/2 )

● Tarjan Dynamic Trees: O ( N2 log( N2 / E ) )

●    E1/2 Slower, but potentially N Parallelism



  

Lock-free: Push-Uplift



  

Lock-Free: Order Heuristic – 
STRATA Data Structure 



  

Lock-Free Results
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