A Parallel Implementation of the Push-Relabel
Max-Flow Algorithm with Heuristics

6.884 Final Project, Spring 2010
Victoria Popic, Javier Velez

LSk P

.bk -

£

E
I B
- |

»

-

Fy
T e e
1I

.
o

= - o4
PN P

Background

* Applications

resource allocation, scheduling, linear programming problems,
graph problems (max bipartite matching)

* Algorithms

- augmenting paths (Ford and Fulkerson, Edmonds-Karp, Dinitz)

- preflow-push (Goldberg and Tarjan) — best in practice Goldberg's
push-relabel hipr algorithm

o |

Max-Flow Push-Relabel Algorithm

« G=(V,E),s, t;c(u, v); f(u, v); [fl
» preflow: allow excess flow at a vertex

e assign a distance from sink value to each vertex; d(s) = [V|, d(t) =0

PUSH(u,v)

// Applicability: u is active, cs(u,v) > 0 and d(u) < d(v) RELABEL(“? - _ _

& =min(e(u),cr(u,v)) // Applicability: u is active,

flu,v) — f(u,v)+8 /N Yw e Vifcr(u,w) >0=d(u) <d(w)
fvu) — f(vu)—8 d(u) «— min(d(w)|(u,w) € Ef)+1

excess(u) = excess(u) — &
excess(v) = excess(v) + 0
DISCHARGE (i)

// Applicability: u is active
while excess(u) # 0
PUSH Of RELABEL (i)

« ordering for discharge: FIFO / LIFO; highest distance nodes first
(best)

| P

—

1 -
| &
i
A
|
"
Ll.]~
-"-\.
1L
_é-.
=9 "
= ¥
=k \
= %
I .

RMF Graphs Parametrized by
(a,b)

d

Y e

Q.

Trees Parametrized by (L, d, m)

d (L-1)

Y e

HI-PR (Goldberg) Data Structures

=

bucket,

* active

* inactive

active nodes, d =1

buckets

node

d

excess

* prevNode
* nextNode

bucket

* active
* inactive

Id
HI T
L1
L'-_ | |
3 2
-|._|
1
— _4._
T 1
"1_-|-r_
I_'\.I. L
HWIN
bl LY
=
I L
i
=
_.‘i__.
v
L=
= o I L |
[1
T
_.,.I'M.

Global Relabeling Heuristic

backwards BFS from sink: computes exact distances of nodes from
the sink

updates buckets and node data (distance and current arc)

for each (hode 1 : inactive and active list of bucket k)

for all neighbors j s.t. (J, i) is an admissible arc
update j: j.d = k+1, j.current = j.first
1f(j.excess > 0)
add j to (k+1) bucket’s active list

else
add j to (k+1) bucket’s inactive list

G

Global Heuristic Time

Global Update Heuristic Time
Frame Graph, a=40

8

- Total Time
= Global Update Time

[\
tn

Time (sec)
o

101

S

100 200 300 400 500 600

700

=t

Parallel Global Relabeling
Heuristic with Pennants and Bags

e use Bag reducers to store the nodes in the buckets during
search (4 Bag reducers for 2 levels of active and inactive
lists)

« after we’re done computing layer k, set the pointers of bucket
k to the nodes in the active and inactive reduced bag

* we need to maintain a node chain inside our bags

- modify bag’s INSERT(node) and MERGE(bag) to
maintain pointers between all the nodes inside the
bag

e race: when checking if a node has been visited already, use
atomics/locks to avoid duplicates in the buckets

|

S —— —_
- i |
Y - |

Parallel Global Relabeling Results

 rmf graph (a=100, b=100) |V| = 1,000,000, |E| = 4,950,000
* global update time: serial = 7.848 (s), parallel = 3.932 (s)
speedup = 2
Cilkview Results
Parallelism = 36.34

Burdened Parallelism = 14.14

Speedup Estimate

2 procs: 1.79 - 2.00
4 procs: 2.94 - 4.00
8 procs: 4.34 - 8.00
16 procs: 5.71-16.00

32 procs: 6.77 - 32.00

i

[r— . t-- '

Speedup

16

14

12

10

Testing for Memory
Bandwidth: extra work

Trial results for 'global-update’

I
parallelism

burdened speedup
trials ~ +
|
Zgn + + =+ +

2 4 & 8 10 12 14

Worker Count

Parallelism = 36.34

16

Speedup

18

14 H

12

10

Trial results for 'global-update'

I | T
parallelism
burdened speedup |
trials +
| | | | | | |
] 2 4 5 g 10 12 14
Worker Count

Parallelism = 25.74

16

_Fl||r LI

7

g 11

=]

Testing Memory Bandwidth: Running
8 Independent Copies of Serial Code

e 1 copy serial code alone: 7.848 (s)

* 8 independent copies: accounts for factor of 2
slowdown (i.e. speedup of 2 instead of 4)

copy # update running tme (s)
1 16.351

13.556

18.031

18.963

18.166

17.479

17.607

11.704

oo ~] o LN o Led D

v |
l

Concurrent Global Relabeling
Heuristic

P T pp—
Nl /||

all processors have to be suspended in order to do global relabeling i | R
— instead we should run it concurently with push-relabel |

Anderson and Setubal '92 introduced the concept of a global
relabeling wave

each vertex stores a wave number — the global-relabeling wave that
most recently updated it imid

we only push flow between vertices with same wave number; both
nodes need to be locked n

no distance relabeling operation should decrease the distance label
of a node; node should be locked during relabel and global-
relabeling operations

Parallel Push-Relabel

» parallel discharge in approximate highest-
label first order:

- discharge-chain
- coarsened-discharge
- local-queues
[keep a local list of activated nodes]

* lock-free push-relabel

Discharge-Chain

e spawn a discharge-chain: let the processor proceed
discharging its newly activated node with the highest
distance label — if it exists and if its distance is >= to the
global highest distance of an active node

MAINgischarge—chain ()

while ActiveNodeSet # 0
u < maxg,){v|v € ActiveNodeSet }
cilk_spawn DISCHARGE-CHAIN(u)

Ll |

e p—

Coarsened-Discharge

» gather a batch of active nodes to discharge into an array
starting from the highest-label bucket, run a cilk_for loop
over these nodes

 number of nodes gathered, T, can be varied to improve
performance

MAINcoarsened—d ischarge ()

while ActiveNodeSet # 0
// Grab the top 7" active nodes
a < buckets[top T elements]
cilk_foruc€a
DISCHARGE(u)

e p—

|

In-Out Local Thread Queues E
(Anderson and Setubal "92; Bader ‘06) § |

» each thread has a local input queue of buckets and a ‘;_" ﬁ =
local output queue =

* threads grab active nodes to discharge from global E_\ At
buckets and place newly activated nodes into their local &

output queue

« when output queue is filled, the nodes in the output

queue are transfered back to the global buckets

« Variables (need to be adjusted dynamically):

- thr_in = how many active nodes to grab

- thr_out = size of the output queue / when to sync
with the global buckets

*current implementation needs to be optimized

In-Out Local Thread Queues

Global
buckets -

thr out

thr_in

Local
Buckets

2

L current_worked id

Input

queue

l Ouput

queue

-

Parallel Push-Relabel Results

rmfl discharge-chain 126.63
discharge-chain-concurrent 131.8
coarsened-discharge 85.83
local-queues 176.85

rmfw discharge-chain 94 .44
discharge-chain-concurrent 116.35
coarsened-discharge 102.24
local-queues 186.8

Running times (in seconds) of the parallel push-relabel algorithms.

» Parallel times were obtained on 8 workers.

108.98
54.07

116.79
166.31

86.11
65.57
133.3
202.51

1.16
2.44
1.16
1.064

1.1

1.77
0.77
0.92

» rmfl grpah, a=50 and b = 1000, has 2,500,000 nodes and 12,297,500 edges;
rmfw graph, a=200 and b=50, has 2,000,000 nodes and 9,920,000 edges.
» The hipr algorithm runs in 88.77 s on rmfl and 126.66 s on rmfw

—l L]

Discharge-Chain Results

16

14

12

10

Speedup
[#8]

Cilkview plot: speedup for parallel push-relabel using discharge-
chain on rmf(a = 50, b = 1000) without concurrent global-relabeling

Trial results for 'StageOne’

parallelism ——
| | burdened speedup |
trials +
£ 4L +T+T T+
T+ T | | | | | |
0 2 d 5} 8 10 12 14

Worker Count

16

g 11

=]

Best: Discharge-Chain with

Concurrent Global-Relabeling

Running Time (s)

140

120

100

80

¢ Brmifl

60 @ rrmfw

40

20

2 3 4 5 6 7 8
Number of Processors

Parallel push-relabel using discharge-chain with concurrent global-
relabeling: speedup of ~2 on rmfl graphs

:u":

Coarsened-Discharge Results

Speedup

16

14 H

12

10

Trial results for 'StageOne!

]]
parallelism ———
burdened speedup

trials +

Lo
+\‘ﬁ—'_| S | l
3] 8 10 12

Worker Count

14

16

_Fl||l LI

g 11

=]

Cilkview plot: speedup for parallel push-relabel using coarsened-
discharge on rmf(a = 50, b = 1000) without concurrent global-
relabeling

Lock-Free Push-Relabel (Hong'08)

e Push only to the 'lowest’ neighbor
 Lift yourself if no lower neighbor

« Done completely in parallel (per node!)
 Except Termination is a problem

- Must figure out when no node has any excess
— This now requires a barrier (aka a Lock!)
e Oh, and tons of Compare-And-Swap ops.

Lock-Free: Exactly How Bad?

Original Push-Relabel : O (N° E)

“Lock Free” (without termination): O (N° E)
Highest Active Nodes First (hi_pr): O (N*E"#)
Tarjan Dynamic Trees: O (N°log(N*/E))

E"“ Slower, but potentially N Parallelism

LSk P

TIII !
1

.|

i £

Lock-free: Push-Uplift

PUSH/ock free (1, V)

// Applicability: excess(u) > 0
8 = min(excess(u),cs(u,v))
FETCH-AND-SUBTRACT gtomic(f(u,v) — 8)
FETCH-AND-ADDgomic(f (v, u) + 3)
€y = SUBTRACT-AND-FETCH gsopmic (excess(u) — 8)
€y,,; = FETCH-AND-ADD¢omic (excess(v) +)
ife,,, =0 & 8> 0 & u ¢ {source,sink}
// v gained positive exces sand became active
FETCH-AND-ADD gsomic (active-node-count + 1)
LOCAL-ADD-TO-STRATA-OUTSET(V)

ife, =0 & 6>0
// u just became inactive
FETCH-AND-SUBTRACT g omic (active-node-count — 1)

UPLIFT ok free (1)

// Applicability: excess(u) >0 & V(u,v)|cs(u,v) >0,
/W d(u) =d(v)
// First, find min distance of admissible arc neighbors
h «— min{d(v)|(u,v) € G & cy(u,v) > 0}
if {v|[(u,v) € G & c¢(u,v) >0} =0

return false
else

d(u) —h+1

returnsrue

-

Lock-Free: Order Heuristic —
STRATA Data Structure

STRATAI

// number of layers in array

long num-layers

// the distance of lowest layer no including bottom
long lowest-layer

// max distance of any node in outset

long max-distance

// min distance of any node in outset

long min-distance

std::vector<node*> top
std::vector<node*>* layers
std::vector<node*> bottom

// num elements in layers not including outset
long num-elements

// mnodes which are locally in this strata

// but are not in layers yet
std::vector<node*> outset

// num layers which will be operated in parallel
// not including top

long num-active-layers

// bookeeping variable with the last

// noderange mapping to this strata

long node-range-last

Id
Ay
o
EI‘L 3
3 .
-H.'l
=
— _4._
—
r;'_-hr.._
l_'\.l. L
HWIN
| T
AlEEE
=
I L
i
_.‘i__.
A
r.l'
- s\
T
_.,.I'M.
o

10"
~ HI-PR ,
HI—PHparBFS "
@ 10° | + Lockiree '
& _ HI-PR .
=] no heuristics
o F
8 . 6
o 10 - +
I +
w +
E ! 5 ¥
4 + ¥
‘5 10 ;
@ * o
£ ' by
2 10° 7
0
10 P | TR | poooa sl ' . PO TN T T PR
10 10° 10° 10" 10° 10

Lock-Free Results

Work Comparison Lockfree HI-PR Algorithms

number of nodes

| . | 1
] J
| h | 4t
[hy
i
L e g B |
-
i
A
_\"I
i
——
="
;r_
i
_h:l. - | =
L,
l h
I
s\
. -
]
_\“I

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

