A Parallel Implementation of the Push-Relabel
Max-Flow Algorithm with Heuristics

6.884 Final Project, Spring 2010
Victoria Popic, Javier Velez
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Background

* Applications

resource allocation, scheduling, linear programming problems,
graph problems (max bipartite matching)

* Algorithms

- augmenting paths (Ford and Fulkerson, Edmonds-Karp, Dinitz)

- preflow-push (Goldberg and Tarjan) — best in practice Goldberg's
push-relabel hipr algorithm
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Max-Flow Push-Relabel Algorithm

« G=(V,E),s, t;c(u, v); f(u, v); [fl
» preflow: allow excess flow at a vertex

e assign a distance from sink value to each vertex; d(s) = [V|, d(t) =0

PUSH(u,v)

// Applicability: u is active, cs(u,v) > 0 and d(u) < d(v) RELABEL(“? - _ _

& =min(e(u),cr(u,v)) // Applicability: u is active,

flu,v) — f(u,v)+8 /N Yw e Vifcr(u,w) >0=d(u) <d(w)
fvu) — f(vu)—8 d(u) «— min(d(w)|(u,w) € Ef)+1

excess(u) = excess(u) — &
excess(v) = excess(v) + 0
DISCHARGE (i)

// Applicability: u is active
while excess(u) # 0
PUSH Of RELABEL (i)

« ordering for discharge: FIFO / LIFO; highest distance nodes first
( best)
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RMF Graphs Parametrized by
(a,b)
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Trees Parametrized by (L, d, m )
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HI-PR (Goldberg) Data Structures

=

bucket,

* active

* inactive

active nodes, d =1

buckets

node

d

excess

* prevNode
* nextNode

bucket

* active
* inactive
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Global Relabeling Heuristic

backwards BFS from sink: computes exact distances of nodes from
the sink

updates buckets and node data (distance and current arc)

for each (hode 1 : inactive and active list of bucket k)

for all neighbors j s.t. (J, i) is an admissible arc
update j: j.d = k+1, j.current = j.first
1f(j.excess > 0)
add j to (k+1) bucket’s active list

else
add j to (k+1) bucket’s inactive list
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Parallel Global Relabeling
Heuristic with Pennants and Bags

e use Bag reducers to store the nodes in the buckets during
search (4 Bag reducers for 2 levels of active and inactive
lists)

« after we’re done computing layer k, set the pointers of bucket
k to the nodes in the active and inactive reduced bag

* we need to maintain a node chain inside our bags

- modify bag’s INSERT(node) and MERGE(bag) to
maintain pointers between all the nodes inside the
bag

e race: when checking if a node has been visited already, use
atomics/locks to avoid duplicates in the buckets
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Parallel Global Relabeling Results

 rmf graph (a=100, b=100) |V| = 1,000,000, |E| = 4,950,000
* global update time: serial = 7.848 (s), parallel = 3.932 (s)
speedup = 2
Cilkview Results
Parallelism = 36.34

Burdened Parallelism = 14.14

Speedup Estimate

2 procs: 1.79 - 2.00
4 procs: 2.94 - 4.00
8 procs: 4.34 - 8.00
16 procs: 5.71-16.00

32 procs: 6.77 - 32.00
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Speedup
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Testing for Memory
Bandwidth: extra work

Trial results for 'global-update’
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Testing Memory Bandwidth: Running
8 Independent Copies of Serial Code

e 1 copy serial code alone: 7.848 (s)

* 8 independent copies: accounts for factor of 2
slowdown (i.e. speedup of 2 instead of 4)

copy # update running tme (s)
1 16.351

13.556

18.031

18.963

18.166

17.479

17.607

11.704
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Concurrent Global Relabeling
Heuristic

P T pp—
Nl /||

all processors have to be suspended in order to do global relabeling i | R
— instead we should run it concurently with push-relabel |

Anderson and Setubal '92 introduced the concept of a global
relabeling wave

each vertex stores a wave number — the global-relabeling wave that
most recently updated it imid

we only push flow between vertices with same wave number; both
nodes need to be locked n

no distance relabeling operation should decrease the distance label
of a node; node should be locked during relabel and global-
relabeling operations




Parallel Push-Relabel

» parallel discharge in approximate highest-
label first order:

- discharge-chain
- coarsened-discharge
- local-queues
[keep a local list of activated nodes]

* lock-free push-relabel




Discharge-Chain

e spawn a discharge-chain: let the processor proceed
discharging its newly activated node with the highest
distance label — if it exists and if its distance is >= to the
global highest distance of an active node

MAINgischarge—chain ()

while ActiveNodeSet # 0
u < maxg,){v|v € ActiveNodeSet }
cilk_spawn DISCHARGE-CHAIN(u)
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Coarsened-Discharge

» gather a batch of active nodes to discharge into an array
starting from the highest-label bucket, run a cilk_for loop
over these nodes

 number of nodes gathered, T, can be varied to improve
performance

MAINcoarsened—d ischarge ( )

while ActiveNodeSet # 0
// Grab the top 7" active nodes
a < buckets[top T elements]
cilk_foruc€a
DISCHARGE(u)
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In-Out Local Thread Queues E
(Anderson and Setubal "92; Bader ‘06) § |

» each thread has a local input queue of buckets and a ‘;_" ﬁ =
local output queue =

* threads grab active nodes to discharge from global E_\ At
buckets and place newly activated nodes into their local &

output queue

« when output queue is filled, the nodes in the output

queue are transfered back to the global buckets

« Variables (need to be adjusted dynamically):

- thr_in = how many active nodes to grab

- thr_out = size of the output queue / when to sync
with the global buckets

*current implementation needs to be optimized




In-Out Local Thread Queues

Global
buckets -

thr out

thr_in

Local
Buckets
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Parallel Push-Relabel Results

rmfl discharge-chain 126.63
discharge-chain-concurrent 131.8
coarsened-discharge 85.83
local-queues 176.85

rmfw  discharge-chain 94 .44
discharge-chain-concurrent  116.35
coarsened-discharge 102.24
local-queues 186.8

Running times (in seconds) of the parallel push-relabel algorithms.

» Parallel times were obtained on 8 workers.

108.98
54.07

116.79
166.31

86.11
65.57
133.3
202.51

1.16
2.44
1.16
1.064

1.1

1.77
0.77
0.92

» rmfl grpah, a=50 and b = 1000, has 2,500,000 nodes and 12,297,500 edges;
rmfw graph, a=200 and b=50, has 2,000,000 nodes and 9,920,000 edges.
» The hipr algorithm runs in 88.77 s on rmfl and 126.66 s on rmfw
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Discharge-Chain Results
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Cilkview plot: speedup for parallel push-relabel using discharge-
chain on rmf(a = 50, b = 1000) without concurrent global-relabeling

Trial results for 'StageOne’
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Best: Discharge-Chain with

Concurrent Global-Relabeling

Running Time (s)
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Parallel push-relabel using discharge-chain with concurrent global-
relabeling: speedup of ~2 on rmfl graphs
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Coarsened-Discharge Results
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Cilkview plot: speedup for parallel push-relabel using coarsened-
discharge on rmf(a = 50, b = 1000) without concurrent global-
relabeling




Lock-Free Push-Relabel (Hong'08)

e Push only to the 'lowest’ neighbor
 Lift yourself if no lower neighbor

« Done completely in parallel ( per node! )
 Except .... Termination is a problem

- Must figure out when no node has any excess
— This now requires a barrier ( aka a Lock! )
e Oh, and tons of Compare-And-Swap ops.




Lock-Free: Exactly How Bad?

Original Push-Relabel : O ( N° E )

“Lock Free” ( without termination ): O ( N° E )
Highest Active Nodes First ( hi_pr): O (N*E"#)
Tarjan Dynamic Trees: O ( N°log(N*/E ) )

E"“ Slower, but potentially N Parallelism
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Lock-free: Push-Uplift

PUSH/ock free (1, V)

// Applicability: excess(u) > 0
8 = min(excess(u),cs(u,v))
FETCH-AND-SUBTRACT gtomic(f(u,v) — 8)
FETCH-AND-ADDgomic(f (v, u) + 3)
€y = SUBTRACT-AND-FETCH gsopmic (excess(u) — 8)
€y,,; = FETCH-AND-ADD¢omic (excess(v) + )
ife,,, =0 & 8> 0 & u ¢ {source,sink}
// v gained positive exces sand became active
FETCH-AND-ADD gsomic (active-node-count + 1)
LOCAL-ADD-TO-STRATA-OUTSET( V)

ife, =0 & 6>0
// u just became inactive
FETCH-AND-SUBTRACT g omic (active-node-count — 1)

UPLIFT ok free (1)

// Applicability: excess(u) >0 & V(u,v)|cs(u,v) >0,
/W d(u) =d(v)
// First, find min distance of admissible arc neighbors
h «— min{d(v)|(u,v) € G & cy(u,v) > 0}
if {v|[(u,v) € G & c¢(u,v) >0} =0

return false
else

d(u) —h+1

returnsrue
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Lock-Free: Order Heuristic —
STRATA Data Structure

STRATAI

// number of layers in array

long num-layers

// the distance of lowest layer no including bottom
long lowest-layer

// max distance of any node in outset

long max-distance

// min distance of any node in outset

long min-distance

std::vector<node*> top
std::vector<node*>* layers
std::vector<node*> bottom

// num elements in layers not including outset
long num-elements

// mnodes which are locally in this strata

// but are not in layers yet
std::vector<node*> outset

// num layers which will be operated in parallel
// not including top

long num-active-layers

// bookeeping variable with the last

// noderange mapping to this strata

long node-range-last
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Lock-Free Results

Work Comparison Lockfree HI-PR Algorithms

number of nodes
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