
An Arbitrary N-dimensional Stencil Transformer in Cilk++∗

Yuan Tang
yuantang@csail.mit.edu

Steven Bartel
sbartel@mit.edu

Dina Kachintseva
dinka@mit.edu

ABSTRACT
Stencil computation is derived directly from solving partial
differential equations (PDEs). The conventional way of solv-
ing the stencil problem is using nested loops, which sweep
over a spatial grid, updating each point at time t + 1 by
neighboring grid points at time t, t−1, ..., t−k. These kinds
of loop algorithms, along with all their variants, inevitably
suffer from consistent cache misses due to their memory ac-
cess pattern. Matteo Frigo’s paper [3, 5, 4] invented a cache
oblivious algorithm which greatly reduces the cache miss ra-
tio. In this paper, we explored all known optimizations for
stencil computations, along with some of our own innova-
tive approaches, and concluded with concrete performance
graphs which approaches are effective and which ones are
not.

Keywords
stencil computation, cache aware algorithm, cache oblivious
algorithm, optimization

1. BACKGROUND
Partial differential equation (PDE) solvers constitute a

large fraction of scientific applications in such diverse ar-
eas as heat diffusion, electromagnetics, and fluid dynam-
ics. These applications are often implemented using iterative
finite-difference techniques, which sweep over a spatial grid,
performing nearest neighbor computations called stencils [6,
2]. Formally, in a stencil computation, [5] each point in an
n-dimensional spatial grid at time t is updated as a function
of neighboring grid points at time t−1, ..., t−k, —- thereby
representing the coefficients of the PDE for that data ele-
ment. The n-dimensional grid plus the time dimension span

∗We name it transformer because we are going to leverage
the template meta-programming techniques to transform
the input specification written in some meta-language to
some internal DAG , and then transform it to final Cilk++
code after applying our optimizations on internal DAG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIT course 6.884 Concepts in Multicore Programming
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

an (n+1)-dimensional spacetime. These operations are then
used to build solvers ranging from simple Jacobi iterations to
complex multi-grid and adaptive mesh refinement methods.

Stencil computations perform global sweeps through data
structures that are typically much larger than the capacity of
available data caches. As a result, stencil computations gen-
erally achieve a low fraction of theoretical peak performance,
since data from main memory cannot be transferred fast
enough to avoid stalling the computational units on modern
micro-processors.

In class, we are introduced to a cache-oblivious algorithm
invented by Matteo Frigo [5, 4] that by employing the divide-
and-conquer strategy, and by conducting cuts in both spacial
dimensions and time dimension, we are able to save a factor
of O(Z1/n) 1 cache misses compared to a naive algorithm

in the serial version and incur only O(n2/Z + n +
√

Pn3+ǫ)
cache misses with high probability in parallel version.

However, without advanced optimization and tuning tech-
niques, the cache-oblivious algorithm will be less likely to
outperform the cache-aware time-skewing algorithm [1]. In
the serial version, the main bottleneck to higher performance
is the excessive overhead incurred by too many recursive
function calls. In the parallel version, the situation is exac-
erbated by the lack of parallelism.

2. GOALS
Based on the advanced technology of Cilk++, we are go-

ing to develop a generalized cache-oblivious Cilk++ stencil
computation program which will accomplish the following
goals:

1. optimize to achieve fastest possible runtime

2. generalize the computation to arbitrary n-dimensions

3. dealing with boundary condition

4. dealing with irregular shaped stencil computation

3. SUMMARY
In order to make our stencil transformer faster, we have

explored the following approaches:

• coarsening strategy for the recursive cache oblivious
algorithm, which boosts the performance by 16%

• cutting heuristics for spatial dimensions, which gains
another 12% in performance

1Z is the size of an Ideal cache

• zero padding technique to eliminate the branching over-
head in boundaries. The performance gain from this
technique is 25%

• SIMDizing, which provides a 10% improvement in per-
formance.

• optimizing ’N’, which generates N-specific code for any
specified ’N’ from the original template. The final code
is 42% more efficient than the template.

By applying all these optimization to the cache oblivious
stencil algorithms, our software achieves a 2.6 times speedup
compared to the naive parallelization of nested loops.

In summary, our software has several key features, which
make our software relatively unique in the field of stencil
computation:

• Our software can compute arbitrary N-dimensional sten-
cils, based on the user’s specification.

• Our software can compute a stencil on an irregularly
shaped grid, which means that the shape of the spatial
dimensions is no longer restricted to being rectangular.

• We can combine both periodic boundary conditions
and non-periodic boundary conditions into one stencil
problem.

• We exploited SIMD plus loop unrolling techniques to
further accelerate the execution of base case. And we
plan to compare this manually optimized code with
what could be potentially done by the compiler.

• Static elaboration. Although currently this technique
has not shown significant performance advantages, it
can be used as a medium to mingle different algorithms
for stencil computation in one run, which might be of
some theoretical interest.

4. TESTING PLATFORM
We test all of our algorithms and optimizations on a 8-

core Cagnode machine with roughly 8 GB of memory. The
processor is Intel Xeon X5460 @ 3.16GHz, with cache size
of 6 MB per core. Unless otherwise noted, we run our sim-
ulations on all 8 cores.

Unless specified, each test contains 100 different simula-
tions, ranging from small grid sizes and small time steps
to large grid sizes and large timesteps. Each simulation is
the average of three trials. We generate 3D plots in which
the width of the dimensions is on the x-axis, the number
of time steps is on the y axis, and the performance, mea-
sured in ms, is on the z-axis. On multi-dimensional stencil
computations, all of the dimensions have the same width. A
higher curve translates to higher runtime, or worse perfor-
mance. Our base case kernel applies the n-dimensional heat
diffusion equation.

5. OPTIMIZATIONS

5.1 Cutting Heuristics
The cache oblivious stencil algorithm, outlined in Matteo

Frigo’s paper [3, 5, 4], cuts space into as many trapezoids
as possible. We explored the idea of cutting into a fixed

Figure 1: In the cache oblivious stencil algorithm,
space can be cut into as many trapezoids as possible
(top), or a fixed number of trapezoids (bottom).

Figure 2: Performance of cutting into 4 trapezoids
vs cutting into as many as possible.

number, r, of trapezoids on space cuts. Figure 1 demon-
strates two types of cuts: one where space is cut into as
many trapezoids as possible, and one where space is cut
into a fixed number of trapezoids (r = 2).

We tested different numbers of cuts r = 2, 4, 8, 16 and as
many as possible on grids of varying size and time steps. On
average, r = 4, 8 (539 ms, 552 ms respectively) outperformed
r = 2, 16 and as many as possible (615 ms, 622 ms, 613 ms
respectively). Figure 2 shows how r = 4 compares to as
many as possible. On the smallest grid (100 × 100), the
speedup is 17.49 ms vs 18.36 ms (4.7%) and on the largest
grid (1000 × 1000), the speedup is 539.12 ms vs 613.50 ms
(12%). In nearly every case, r = 4 performs better than
as many as possible. r = 8 is omitted because it is nearly
identical to r = 4. r = 2, 16 are omitted because they are
nearly identical to as many as possible.

5.2 Coarsening Strategy
In the paper [5, 4], the cache oblivious algorithm for sten-

cils looks something like the following:

Walk (...) {
if (lt <= T STOP) {

base case(...);
} else if (lt > T STOP) {

if (x1-x0 > 4 * slope x * lt) {
/* cut into X dimension */
...

}
} else {

/* cut into Time dimension */
Walk(t0, t0+lt/2, ...);
Walk(t0+lt/2, t1, ...);

}
}

This implementation has several weaknesses. Firstly, the
coarsening is conducted in the time dimension only. Sec-
ondly, it always cuts into space before any attempt to cut
into the time dimension, which means that the space cube
may be too small by the time the algorithm first cuts into
time. So it loses the benefits of coarsening in space if there
are any. Thirdly, the computation of the base case can only
be triggered by a previous cut in time, which is severely se-
rialized in execution. Even worse, we can imagine that for
some extreme case in which we compute a stencil on a one
billion by one billion grid and only one time step, the par-
allel version of the cache oblivious algorithm will regress to
a serial loop.

If we understand the problem, the solution is also very
straightforward: we step into the base case computation de-
pending on the size of all space and time dimensions. More-
over, we must put in some guards to prevent small cuts into
space dimensions. The program will look something like the
following:

Walk(...) {
if (lt <= T STOP &&

lx <= X STOP && ly <= Y STOP) {
base case(...);

} else {
if (lx > 4 * slope x * lt && lx > X STOP) {

/* cut into X dimension */
cilk spawn Walk(black1);
Walk(black2);
cilk sync;
cilk spawn Walk(gray1);
cilk spawn Walk(gray2);
Walk(gray3);
return;

} else if (ly > 4 * slope y * lt && ly > Y STOP) {
/* cut into Y dimension */

} else {
/* cut into Time dimension */
Walk(t0, t0+lt/2, ...);
Walk(t0+lt/2, t1, ...);

}
}

}

5.3 Overlap Time-Skewing

0
500

1000
1500

2000

0

500

1000

1500

2000

0

0.5

1

1.5

2

2.5

x 10
4

width
num steps

ti
m

e
 (

m
s
)

recursive mp xyt
recursive mp t

Figure 3: Speedup of coarsening on lt only versus
coarsening on all space and time dimension

Both the parallel naive algorithm and the cache oblivi-
ous recursive algorithm suffer from communication overhead
when two cores compute on adjacent trapezoids near the
boundaries in parallel. The parallel naive algorithm also
suffers from burdened parallelism because it spawns both
grey and black trapezoids (see Figure 1). We hoped to ad-
dress these issues by applying overlapped time-skewing to
the parallel naive algorithm. In overlap time skewing, bases
of trapezoids overlap, resulting in redundant computation
as shown in Figure 4. In addition, these regions must be
copied to avoid race conditions. However, the entire space
cut can be computed in parallel because there is no longer
any need for grey trapezoids.

We implemented overlap time-skewing by using a toggle
array that spans the entire grid outside of each base case, and
smaller toggle arrays per base case trapezoid. When step-
ping into the base case, values are read from the large toggle
array into the base case trapezoid toggle array. For interme-

!"

#"
$%&'("')#"

*+(,-&%%(."/01("$2(3045"

6(.)4.&4#"'71%)#&874"

Figure 4: In overlap time skewing, redundant com-
putation is performed to remove the grey trapezoids
from Figure 1.

diate time steps, computation is done using the trapezoid
toggle array and then the results are written back out to the
large toggle array on the last base-case time step.

On the 2D heat equation kernel, overlap time-skewing per-
formed better on small grids (smaller than 500x500), but
worse on large grids (larger than 500x500). Presumably,
cache misses have a larger effect on larger grids, because less
of the grid fits into cache. Because the overlap time-skewing
approach uses an additional toggle-array per trapezoid, it
needs to load more data, which we guess hurts performance
due to more cache misses.

5.4 Optimizing the Base Kernel for 2D
The base calculation for our 2D stencil computations uses

the heat diffusion equation to update the heat of a given
point in XY space at time t + 1 using the heat of the sur-
rounding points at time t. The original implementation of
this heat calculation is shown below:

U(Q, t+1,x,y) = Q->CX * (U(Q, t,x+1,y)

- 2.0 * U(Q, t,x,y) + U(Q, t,x-1,y))

+ Q->CY * (U(Q, t,x,y+1)

- 2.0 * U(Q, t,x,y) + U(Q, t,x,y-1))

+ U(Q, t,x,y);

In order to speed up this calculation, we replaced the in-
dividual floating point operations for each dimension with
SIMD instructions which perform these operations in par-
allel for the X and Y dimensions. Since an SIMD register
can hold up to 128 bits, it can store a vector of two doubles,
each containing the heat information for a given point in XY
space. Thus, by creating four vectors:

1. vec1 = [U(Q, t,x+1,y), U(Q, t,x,y+1)]

2. twovec = [2.0 * U(Q, t,x,y), 2.0 * U(Q, t,x,y)]

3. vec2 =[U(Q, t,x-1,y), U(Q, t,x,y-1)]

4. cvec = [Q->CX, Q->CY]

six of the floating point operations shown in the code above
can be executed using three SIMD operations, not including
the load operation. The code for this is shown below:

asm volatile(

"movapd (%0), %%xmm0\n\t"

"addpd (%1), %%xmm0\n\t"

"subpd (%2), %%xmm0\n\t"

"mulpd (%3), %%xmm0\n\t"

"movapd %%xmm0, (%0)"

::"r"(vec1), "r"(vec2), "r"(twovec), "r"(cvec)

);

The addpd, subbpd, mulpd instructions each perform two
double operations - one for each of the space dimensions.
Although additional space and time must be spent to in-
stantiate the vector arrays for storing these double values,
this is an acceptable cost if they are created only once per
time step.

We compared performance of the SIMD instructions ver-
sus the original code on a series of 2D space heat grids, with
sizes ranging from 100 × 100 to 1000 × 1000 and number of
time steps ranging from 100 to 1000. The results of these
tests are summarized in Table 1 and Figure 5. Based on
these results, we observed that replacing the normal C++
code floating point operations with SIMD instructions cre-
ated a speedup of 10% for the 2D code.

Table 1: Runtimes for 2D SIMD vs Original Base
Kernel

Original SIMD
Range 100×100
to 1000 × 1000

41 ms to 6159 ms 37 ms to 5521 ms

Average 1378 ms 1237 ms

050100150200250300

0

500

1000

0

1000

2000

3000

4000

5000

6000

7000

widthnum steps

tim
e
 (

m
s)

2D mine
2D orig

Figure 5: Runtimes for Stencil Computation Heat
Diffusion Algorithm with Optimized vs Original 2D
Kernel

6. GENERALIZE TO ARBITRARY N- DI-
MENSION

A fresh feature of our software is to provide the user the
option to calculate stencils on arbitrary N-dimension grids.
That is, we provide some template, and based on user’s input
we generate a stencil code of a specific number of dimensions
from the template. Firstly, it is generated from the tem-
plate, so there’s no additional overhead incurred. Secondly,
it provides the user with more options.

With this new feature, we have tried up to 8 dimensions,
108 grids can be computed, which consumes 2 ∗ (size + 2 ∗
slope)N ∗ 8 bytes of memory. The only constraint is the
amount of memory that system can allocate to a user level
application.

Currently, we use a Python script to generate the final
code out of this arbitrary N-dimensional template. In this
code generation procedure, we have applied some optimiza-
tions, which will be detailed in the following section.

6.1 Optimizing the Base Case for N dimen-
sions

The original implementation of the arbitrary N-dimensional
case assumed that N would not be known until compile time,
and thus used an update index function to iterate over N-
dimensional space for each time step. The code for this is
shown below:

for (int t = t0; t < t1; t++) {

while (!done) {

kernel(Q, t, l_index);

done = update_index(l_index,

l_head_index, l_tail_index);

}

...

}

To optimize this code, we took advantage of meta-programming
techniques to expand the above while loop into a series of
nested for loops, one for each space dimension being iter-
ated over. We created a script that, given N, generates an
implementation of the base case kernel method specific to
the number of dimensions specified. Currently, this script is
implemented in python; we would eventually replace it with
the corresponding C++ metaprogramming. For the case
when N = 3, our script would replace the above loop for
iterating over N dimensional space with the following series
of loops:

for (int t = t0; t < t1; t++) {

for(int x0= l_head_idx[0]; x0<l_tail_idx[0]; x0++){

for(int x1= l_head_idx[1]; x1<l_tail_idx[1]; x1++){

for(int x2= l_head_idx[2]; x2<l_tail_idx[2]; x2++){

....

In order to keep track of the point in N dimensional space
being updated, our code uses an array of length N, called
l idx, to store the indexes of the current point. Within the
kernel code to calculate the heat at a specific point, this
array had to be incremented and decremented to perform
each part of the heat calculation for each dimension. This
code is shown below:

double tmp = 0;

l_idx[i]++;

tmp += U(Q, t, l_idx);

l_idx[i]--;

tmp += -2.0 * U(Q, t, l_idx);

l_idx[i]--;

tmp += U(Q, t, l_idx);

l_idx[i]++;

U(Q, t+1, l_idx) += Q->CX[i] * tmp;

Since the l idx array has to be modified to perform each suc-
cessive calculation, this implementation is difficult for the
compiler to optimize. To change this, we had our N dimen-
sion generating script specify each array of indexes directly
for each calculation done by the kernel. In addition, to op-
timize these calculations even further, we again replaced the
C++ code floating point operations with SIMD instructions.
In order to do this we had to unroll the N dimension loop
so that it could calculate the heat update values for two di-
mensions at a time, instead of just one. Below is the heat
update calculation code generated by our script for N = 3:

l_idx[0] = x0; l_idx[1] = x1; l_idx[2] = x2;

....

U(Q, t+1, l_idx) = U(Q, t, l_idx);

temp_index[0]=x0+1;temp_index[1]=x1;temp_index[2]=x2;

vec1[0] = U(Q, t, temp_index);

temp_index[0]=x0;temp_index[1]=x1+1;temp_index[2]=x2;

vec1[1] = U(Q, t, temp_index);

twovec[0] = 2*U(Q, t, l_idx);

twovec[1] = 2*U(Q, t, l_idx);

temp_index[0]=x0-1;temp_index[1]=x1;temp_index[2]=x2;

vec2[0] = U(Q, t, temp_index);

temp_index[0]=x0;temp_index[1]=x1-1;temp_index[2]=x2;

vec2[1] = U(Q, t, temp_index);

cvec[0] = Q->CX[0];

cvec[1] = Q->CX[1];

asm volatile(

"movups (%0), %%xmm0\n\t"

"addps (%1), %%xmm0\n\t"

"subps (%2), %%xmm0\n\t"

"mulps (%3), %%xmm0\n\t"

"movups %%xmm0, (%0)"

::"r"(vec1), "r"(vec2), "r"(twovec), "r"(cvec)

);

U(Q, t+1, l_idx) += vec1[0]+vec1[1];

In order to compare the performance of our optimized code
against the original code, we performed tests on a series of
3D space heat grids, with sizes ranging from 50× 50× 50 to
300×300×300 and number of time steps ranging from 100 to
1000. We tested our optimized base case both for the loops
and recursive implementations of our stencil algorithm. The
results of these tests are summarized in Tables 2, 3, 4 and
Figures 6, 7.

Table 2: Runtimes for 3D Script Generated Base
Kernel vs Original Base Kernel for Loops Implemen-
tation

Original Optimized
50 × 50 × 50 129 ms 80 ms
300 × 300 × 300 193211 ms 189575 ms
Average 32669 ms 30763 ms

Table 3: Runtimes for 3D Script Generated Base
Kernel vs Original Base Kernel for Recursive Im-
plementation

Original Optimized
50 × 50 × 50 65 ms 47 ms
300 × 300 × 300 202124 ms 115489 ms
Average 34128 ms 19898 ms

Table 4: Speedup for Different Size 3D Grids for
Optimized Base Kernel: Loops vs Recursive Imple-
mentation

Loops Recursive
100 × 100 × 100 30% 42%
300 × 300 × 300 – 42%

Based on these results, we observed that replacing the
original N dimensional code with our script-generated code
created a total speedup of 30% on small (width ≤ 100) 3D
space grids for the loops implementation, and 42% on all 3D
space grids for the recursive implementation. For the loops
implementation, as the size of the 3D space increases, the
optimized implementation no longer performs better than
the original implementation. Presumably, this is due to the
fact that as the size of the 3D space gets larger, the dominat-
ing performance degrading factor becomes the high number
of cache misses.

To determine the portion of the 42% speedup for the re-
cursive implementation that is caused by the loop rewriting
vs the portion caused by the SIMD instructions, we tested
the algorithm optimized just with the SIMD instructions,

050100150200250300

0

500

1000

0

0.5

1

1.5

2

x 10
5

widthnum steps

tim
e
 (

m
s)

3D loops mine
3D loops orig

Figure 6: Runtimes for Stencil Computation Heat
Diffusion Loops Algorithm with Optimized vs Orig-
inal 3D Kernel

050100150200250300

0

500

1000

0

0.5

1

1.5

2

2.5

x 10
5

widthnum steps

tim
e
 (

m
s)

3D recursive mine
3D recursive orig

Figure 7: Runtimes for Stencil Computation Heat
Diffusion Recursive Algorithm with Optimized vs
Original 3D Kernel

if (x == 0 || x == Q->X-1 ||

y == 0 || y == Q->Y-1) {

U(Q, t+1,x,y) = IDENTITY;

}

else

U(Q, t+1,x,y) =

Q->CX * (U(Q, t,x+1,y)

- 2.0 * U(Q, t,x,y) + U(Q, t,x-1,y))

+ Q->CY * (U(Q, t,x,y+1)

- 2.0 * U(Q, t,x,y) + U(Q, t,x,y-1))

+ U(Q, t,x,y);

Figure 8: Original kernel yields poor performance.

but without the code generated by the N loop expansion
script. Again, we ran a series of tests on this algorithm with
3D grid sizes ranging from 50 × 50 × 50 to 300 × 300 × 300
and number of time steps ranging from 100 to 1000. The
results we obtained are summarized in Table 5.

Table 5: Runtimes for Fully Optimized vs SIMD
Base Kernel vs Original Base Kernel for Recursive
Implementation

Original SIMD Optimized
50 × 50 × 50 65 ms 61 ms 47 ms
300 × 300 × 300 202124 ms 174695 ms 115489 ms
Average 34128 ms 29648 ms 19898 ms

These results show that without the N dimension code
generating script, the algorithm achieves a 13% speedup
with just the SIMD optimization. This indicates that a
larger portion of the speedup observed in the fully optimized
version is due to the metaprogramming that generates the N
dimensional base kernel, and a smaller portion to the SIMD
optimization.

7. BOUNDARY CONDITIONS

7.1 Boundary Condition Optimizations
To improve the performance of the kernel, we tried two ap-

proaches to optimizing boundary calculations. The original
kernel shown in Figure 8 yields poor performance because
each time it calculates a space point, it must do several cal-
culations to determine if the point is on a boundary.

The first optimization we tried pre-computes the bound-
ary conditions for each space point, storing the results in
a bitmap. The bitmap stores one bit per space coordinate,
where the bit is set to 0 if it is on the boundary and 1 other-
wise. Extending the kernel to include the boundary bitmap
is shown in Figure 9. This optimization saves computation
on each call to the kernel.

Next, we tried applying the zero padding technique to fur-
ther improve performance. For zero padding, the n-dimensional
array is padded with extra space. Figure 10 shows how zero
padding of width 1 can be applied to the 2-dimensional heat
equation. The kernel is called from x0 to x1 in the x dimen-
sion and y0 to y1 in the y dimension. Since the kernel is
never called on the padding, these space points remain fixed
and the conditional in Figure 8 can now be removed entirely.

U(Q, t+1,x,y) = (B(x,y) ?

Q->CX * (U(Q, t,x+1,y)

- 2.0 * U(Q, t,x,y) + U(Q, t,x-1,y))

+ Q->CY * (U(Q, t,x,y+1)

- 2.0 * U(Q, t,x,y) + U(Q, t,x,y-1))

+ U(Q, t,x,y) :

IDENTITY;

Figure 9: Extending the kernel to support bitmap
boundaries is simple - if the bitmap of the space
coordinate is 1, the stencil is computed at that co-
ordinate, otherwise it isn’t.

Figure 10: When Zero Padding is applied to the
stencil computation, the kernel is called on points
within the range x0 to x1 and y0 to y1.

0
200

400
600

800
1000

0

500

1000

0

500

1000

1500

2000

2500

widthnum steps

tim
e
 (

m
s)

zero padding
non zero padding

Figure 11: Speedup of zero padding on stencil com-
putations.

Both the bitmap approach and zero padding improve per-
formance. On average, the bitmap yielded gains of 17%,
and the zero padding yielded gains of 25%. Figure 11 shows
the speedup of applying the zero padding to grids of differ-
ent sizes and time steps. On the smallest grid (100 × 100),
the speedup is 6 ms vs 10 ms, and on the largest grid
(1000 × 1000), the speedup is 315 ms vs 418 ms (25%).

7.2 Periodic versus non periodic boundary con-
ditions

In non-periodic boundary stencils, we can utilize the zero-
padding technique to greatly reduce the overhead accessing
and updating of boundary element. In periodic boundary
stencils, we adopt a strategy of divide and conquer. We sep-
arate the region into internal region versus boundary region
and call different kernels for them. So the basic idea is to re-
strict the use of modulo operation for boundary regions only.
Based on this region partition, we can further remove all the
modulo operation by checking all elements in boundary re-
gion to see whether they are exactly on the boundary to set
up their indexes directly by some conditional instructions,
such as in Figure 12.

By adopting these optimizations on periodic boundaries,
we save roughly 60% in performance.

Another trick in periodic boundary stencil is that we have
to merge the beginning trapezoid and end trapezoid of ev-
ery dimension into a big trapezoid to avoid asynchronous
updates to the wrap-up elements.

8. STENCILS ON IRREGULARLY SHAPED
GRIDS

Stencil computation may not always conform to a stan-
dard n-dimensional grid. It is conceivable that stencil sim-

idx = (idx == 0) ? size - 1 : ++idx;

idx = (idx == size-1) ? 0 : --idx;

Figure 12: conditional instructions to remove all
modulo operation in boundary region

Figure 13: Bitmap for irregular boundary polygon
defined by five points (left). Rendering of 2D heat
equation on irregular polygon boundary (right).

ulations would require irregular boundaries. For example,
when calculating diffusion of particles in a cell, an irregular
boundary that matches a cell membrane would yield more
realistic results than a standard grid. For this reason, our
system has rudimentary support for irregular boundaries.

To support irregular boundaries, we allow users to define
a bitmap, with one bit per space point. The bit for a space
point is set to 1 if the point falls within the irregular bound-
ary and 0 otherwise. The extension to the kernel to support
irregular shape boundaries is the same as the bitmap bound-
ary condition code shown in Figure 9.

Rather than set each bit manually, the user can call one
of our helper functions: polyBoundary or circBoundary.
polyBoundary allows the user to specify a polygon region
by defining an array of vertices, and circBoundary allows
the user to specify a spherical region by specifying a center
and a radius. These functions pre-compute the bitmap by
performing hit tests for each space point on the grid. Figure
13 shows what the bitmap (left) might look like for a sample
polygon defined by 5 points. Points inside the boundary are
solid; points outside are not. Also shown in Figure 13 is a
time slice of a 2-dimensional heat equation simulation on a
5-point irregular boundary polygon.

Performance gains are also obtained by computing over ir-
regular shaped domains, as compared to the rigid n-dimensional
grid because only a subset of the space coordinates need to
be computed at each time step. Figure 14 shows the speedup
of applying the irregular shape from in Figure 13 to grids
of different sizes and time steps. As the grids are scaled
up, the irregular shape is also scaled up, relative to the grid
size. The performance graph for irregular boundary con-
ditions and regular boundary conditions are shown in green
and red respectively. The irregular boundary condition wins
in nearly every case. The average speedup over all of the
trials is 234.6 ms vs 315.0 ms (26%). In the smallest grid
(100 × 100), both are the same at 6 ms. In the largest grid
(1000 × 1000), the speedup is 1026 ms vs 1500 ms (32%).

9. CONCLUSION
In this paper, we have presented many optimizations to

improve the performance of stencil computations. In the
2-dimensional recursive algorithm, coarsening on space and
time, we obtain a 16% performance gain compared to just
coarsening on time. Also, by cutting a fixed number of times
(r = 4, 8), we see performance gains of 12%. By applying
zero padding to the 2-dimensional recursive algorithm, we

Figure 14: Speedup of irregular boundary condi-
tions vs normal boundary conditions.

obtain performance gains of 25%. Adding SIMD instruc-
tions to the kernel yields 10% on the 2-d heat equation.
Meta-programming the N-dimensional code with loop un-
rolling and SIMD instructions yields performance gains of
42%. Even without SIMD instructions, our recursive cache
oblivious algorithm performs 2.6 times better than a triv-
ial parallel loops implementation when we apply our best
optimizations (see Figure 15).

In addition, we present many features that make our sten-
cil transformer unique, such as support for arbitrary N-
dimensions, irregular grids, and periodic vs non-periodic
boundary conditions. In the future, we would like to further
improve performance by refining the base case computation.
For example, we may investigate expression templates, such
as Blitz++, freepooma, etc. We would like to further in-
vestigate real world applications of stencil computation on
irregular shaped grids to gain insights on how to optimize ir-
regular boundary conditions. In addition, we need to apply
our optimizations other stencils, such as Lattice Boltzmann.

0
200

400
600

800
1000

0

500

1000

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

width
num steps

tim
e
 (

m
s)

best
cilk for

Figure 15: Speedup of our optimized recursive algo-
rithm compared to trivial parallel loops.

Finally, we would like to define a user specification for how
users will interact with our stencil transformer.

10. REFERENCES
[1] Kaushik Datta. Auto-tuning Stencil Codes for

Cache-Based Multicore Platforms. PhD thesis, EECS
Department, University of California, Berkeley, Dec
2009.

[2] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel
Williams, Jonathan Carter, Leonid Oliker, David
Patterson, John Shalf, and Katherine Yelick. Stencil
computation optimization and auto-tuning on
state-of-the-art multicore architectures. In SC ’08:
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–12, Piscataway, NJ, USA,
2008. IEEE Press.

[3] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and
Sridhar Ramachandran. Cache-oblivious algorithms. In
40th Annual Symposium on Foundations of Computer
Science, pages 285–297, New York, New York, October
17–19 1999.

[4] Matteo Frigo and Volker Strumpen. The cache
complexity of multithreaded cache oblivious algorithms.
In SPAA ’06: Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and
architectures, pages 271–280, New York, NY, USA,
2006. ACM.

[5] Matteo Frigo and Volker Strumpen. The memory
behavior of cache oblivious stencil computations. J.
Supercomput., 39(2):93–112, 2007.

[6] Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid
Oliker, John Shalf, and Katherine Yelick. Implicit and
explicit optimizations for stencil computations. In
MSPC ’06: Proceedings of the 2006 workshop on
Memory system performance and correctness, pages
51–60, New York, NY, USA, 2006. ACM.

