Speculative Parallelism in Cilk-++ J

Ruben Perez & Gregory Malecha
MIT

May 11, 2010

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 1/33

-
Parallelizing Embarrassingly Parallel Problems

@ Lots of search algorithms are embarrassingly parallel.

e Search down all the paths of a tree.
e Search multiple disjoint branches in parallel.

@ No communcation overhead.
@ Very little memory contention.

e Since we often only need a single answer, we can stop once we've
found any solution.

@ Cannonical algorithms are in game-search, minimax and a-8 pruning.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 2 /33

-
2 Player Game Trees

Nodes represent game states.

Edges represent transitions
between states.

@ Leaf states are scored by a .
heuristic.

Goal is to maximize the
heuristic against an adversary.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 3/33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Parallelizing MiniMax

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 4 /33

-
Improving MiniMax

@ MiniMax exhaustively searches the game tree to a certain depth
(iterative deepening).
@ Not efficient for most games due to large branching factor.
e Can't search deep enough for the computer to be smart.
@ Intuition Keep track of the range of feasible scores and prune
branches that fall outside the range.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 5/33

a-3 Pruning
@ Keep additional information with each game node: « and S.
@ « is the lower bound on the player's score.
@ (3 is the upper bound on the player’s score.
@ This pruning allows us to search twice as deep on average.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 6 /33

-
a-3 Pruning

Keep additional information with each game node: « and (5.
« is the lower bound on the player's score.

0 is the upper bound on the player’s score.

This pruning allows us to search twice as deep on average.

Let’s see an example...

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 6 /33

Pruning Example
! ! maxXx

. max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

-
Pruning Example

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

-
Pruning Example

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

-
Pruning Example

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

-
Pruning Example

max

max

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

-
Pruning Example

max

max
Prune!

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 7 /33

Outline

@ A Recipe for Speculation
@ Porting the Example
@ Implementing abort

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 8 /33

A Recipe for Speculation

@ When we speculate, we don't want to have to commit to something
finishing.
o Need a way to abort currently running computations that we don't
need anymore.
e For consistency, we'd like to be able to abort computations that are
speculating.

@ We also need a way to combine the results.

e Reducers would work for this, but they will need to be able to call
abort.
o Older versions of cilk had another mechanism for this.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 9 /33

Speculation in Cilk5

@ Speculation is just based on spawn.
@ Combining results done through inlets.

o inlets are functions that merge results together (similar to reducers).
e inlets can also make the choice to abort computations.

Let's look at a simple example. J

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 10 / 33

Simple Example: Native abort & Inlets

@ Imagine you have two computations that should yield the same result,
but one could take significantly longer to compute.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 11 /33

A Recipe for Speculation

Simple Example: Native abort & Inlets

@ Imagine you have two computations that should yield the same result,
but one could take significantly longer to compute.
e Speculatively execute both and abort when the first finishes.

int long_computation_1(voidx args);
int long_computation_2(void* args);

int first(void« argsl, voidx args2) {
int x;
inlet void reduce(int r) {
X = r;
abort;

}

reduce(cilk_spawn long_computation_1(argsl));
reduce(cilk_spawn long_computation_2(args2));
cilk_sync;
return x;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 11 /33

A Recipe for Speculation

Simple Example: Native abort & Inlets

@ Imagine you have two computations that should yield the same result,
but one could take significantly longer to compute.
e Speculatively execute both and abort when the first finishes.

int long_computation_1(voidx args);

int long_computation_2(void* args);

int first(voidx argsl,

voidx args2) {
int x;

inlet void reduce(int r) {
x = T;
abort;

}

reduce(cilk_spawn long_computation_1(argsl));

reduce(cilk_spawn long_computation_2(args2));
cilk_sync;

return x;

@ No support for abort or inlet in cilk++.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 11 /33

eyt dhe B
Outline

@ A Recipe for Speculation
@ Porting the Example

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 12 /33

Handling inlets

@ Inlets are local functions that merge the result of spawned
computations.
e Serve a similar purpose to reducers, but a little more general.
o Get access to the parent function's stack frame.
@ Semantics
e inlets are locally serial, i.e. all of the inlets for a particular stack
frame will run serially.
e The order of executing them is non-deterministic, implementation
based on the amount of time that the computations take.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 13 /33

Handling inlets

int long_computation_1(void* args);
int long_computation_2(voidx args);

int first(void* argsl, voidx args2) {
int x;
inlet void reduce(int r) {
X = r;
abort;
}
reduce(cilk_spawn long_computation_1(argsl));
reduce(cilk_spawn long_computation_2(args2));
cilk_sync;
return x;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 14 / 33

Handling inlets — via Translation

@ Translate inlets into continuations.

o Not a particularly painful translation.
e It can be annoying to work with continuations in C code.
o lIdeally this would be a compilation step.

@ Mostly mechanical translation preserves semantics

o Depending on how they are used, it might be more efficient to use
reducers.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 15 / 33

cilkb Code

int f_1(void* args);
int f_2(voidx args);

int first(void* argsl, voidx args2) {
int x;
inlet void reduce(int r) {
X = r;
abort;
}
reduce(cilk_spawn f_1(argsl));
reduce(cilk_spawn f_2(args2));
cilk_sync;
return x;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 16 / 33

A Recipe for Speculation Porting the Example

Translated cilk++ Code

struct InletEnv { cilk ::mutex m; int x;

int f_1(voidx args, int(*cont)(int, InletEnv*), InletEnv* env);
int f_2(voidx args, int(*cont)(int, InletEnv#), InletEnv* env);

int first_inlet(int result, InletEnvx env) {
env—>m. lock (); // Serial execution
env—>x = result;
abort;

}

env—>m. unlock (); // Serial execution

int first(void« argsl, voidx args2) {

}

InletEnv env;

cilk_spawn f_1(argsl, first_inlet, env);
cilk_spawn f_2(args2, first_inlet, env);
cilk_sync;

return env.Xx;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++

May 11, 2010

17 / 33

A Recipe for Speculation Porting the Example

Translated cilk++ Code

struct InletEnv { cilk ::mutex m; int x;

int f_1(voidx args, int(*cont) (int, InletEnv#*), InletEnv* env);
int f_2(voidx args, int(*cont) (int, InletEnv#), InletEnv* env);

int first_inlet(int result, InletEnvx env) {
env—>m. lock (); // Serial execution
env—>x = result;
abort;

}

env—>m. unlock (); // Serial execution

int first(void« argsl, voidx args2) {

}

InletEnv env;

cilk_spawn f_1(argsl, first inlet, env);
cilk_spawn f_2(args2, first_inlet, env);
cilk_sync;

return env.Xx;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++

May 11, 2010

17 / 33

Translated cilk++ Code

struct InletEnv { cilk ::mutex m; int x; };

int f_1(voidx args, int(*cont)(int, InletEnv*), InletEnv* env);
int f_2(voidx args, int(*cont)(int, InletEnv#), InletEnv* env);

int first_inlet(int result, InletEnvx env) {
env—>m. lock (); // Serial execution
env—>x = result;
abort; Still need to handle abort

env—>m. unlock (); // Serial execution

}

int first(void« argsl, voidx args2) {
InletEnv env;
cilk_spawn f_1(argsl, first_inlet, env);
cilk_spawn f_2(args2, first_inlet, env);
cilk_sync;
return env.Xx;

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 17 / 33

A Recipe for Speculation Implementing abort
Outline

@ A Recipe for Speculation

@ Implementing abort

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 18 / 33

abort Features

@ We saw a notion of global abort in Lab 5.
e When you abort, you abort everything, completely done.

@ This is not compositional.

Compositionality

Compositionality requires the ability to abort speculating computations.
Need an abort hierarchy.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 19 / 33

Hierarchical abort

@ Abort any subtree of the computation without affecting the rest of
the computations.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 20 /33

Hierarchical abort

@ Abort any subtree of the computation without affecting the rest of
the computations.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 20 /33

Hierarchical abort

@ Abort any subtree of the computation without affecting the rest of
the computations.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 20 /33

User-Implemented abort

@ Implement using polling...

0]
o] [o] o] [o]
0] 0] 0] 0]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

0]
o] [o] o] [o]
0] 0] 0] 0]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

0]
0] o] 0] [o]
Should 1 abort? [0][0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

0]
’ﬂ 0] 0] [o]
Should 1 abort? [0]0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

l 0]
’a 0] 0] [o]
Should 1 abort? [0]0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

0]
o] [o] o] [o]
Should | abort? nn mn
es

Y

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

o Also, lazily copy values downward.

0]
0] o] 0] [o]
Should 1 abort? [0][0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

o Also, lazily copy values downward.

0]
’ﬂ 0] 0] [o]
Should 1 abort? [0]0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

o Also, lazily copy values downward.

l 0]
’a 0] 0] [o]
Should 1 abort? [0]0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.

o Also, lazily copy values downward.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.

Should | abort?
Yes

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

0]
o] [o] o] [o]
0] 0] 0] 0]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...

@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

Abort! 0]
o] o] o] o]
0][0] 0]o]

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...
@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...
@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...
@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

User-Implemented abort

@ Implement using polling...
@ Two possible implementations:
@ Poll up toward the root.
o Also, lazily copy values downward.
@ Abort down, push the abort flag down the tree

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 21 /33

High-level Performace

e Poll-Up

o Polling is expensive (linear in depth of node)
e abort is cheap (constant time, single memory access).

o Abort-Down

o Polling is cheap (constant time, single memory access).
o abort is expensive (linear in the size of the subtree).

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 22 /33

High-level Performace

e Poll-Up
o Polling is expensive (linear in depth of node)
e abort is cheap (constant time, single memory access).
e Really simple implementation.
o Abort-Down
o Polling is cheap (constant time, single memory access).
o abort is expensive (linear in the size of the subtree).
o Code is much more complex.
e Some extra overhead, currently using a locking implementation.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 22 /33

Outline

© Evaluation
@ Performance
@ Complexity Porting Old Code

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 23 /33

Evaluation Performance

Outline

© Evaluation
@ Performance

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++

May 11, 2010

24 /33

Evaluation Performance

Different Flavors of Abort

o Compare the different abort techniques.

Build a tree of height 14 and branching factor of 4.

Poll at each leaf 100 times.

Abort the root.
Poll at each leaf.

Processor Ticks (x1000000)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Distribution of Time
Tree Height 14, Branching Factor 4

Poll Up PollUp (Caching) Poll Down
Abort Method

@ Note that abort is serial.

Ruben Perez & Gregory Malecha (MIT)

Speculative Parallelism in Cilk++

W Aborted Pol(x1)
O Abort

W Poi (x100)
Wsuid

May 11, 2010

25 /33

Evaluation Performance

Different Flavors of Abort

@ Compare the different abort techniques.
o Build a tree of height 20 and branching factor of 2.
e Poll at each leaf 100 times.
e Abort the root.
o Poll at each leaf.

Distribution of Time
Tree Height 20, Branching Factor 2

B Aborted Pol(x 1.
Abort

B Pol (x100)
Wauid

Processor Clock Ticks (x1000000)

Poll Up PollUp (Caching) Poll Down
Abort Method

@ Note that abort is serial.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 26 / 33

Evaluation Performance

Polling Granularity Effects — Nodes Explored

e We're running our ported pousse code (with some instrumentation).
o Granularity N doesn't poll at the lowest N levels of the tree.

@ Base only checks abort in the loop that spawns the child
computations.

Total Number of Nodes Explored
66000

64000
62000

60000

58000
56000
54000

Granularity 3 Granularity 4 Granularity 5 Base
Polling Granularity

of Nodes (x1000)

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 27 / 33

Evaluation Performance

Polling Granularity Effects — # of Polls

e We're running our ported pousse code (with some instrumentation).
@ Granularity N doesn't poll at the lowest N levels of the tree.

@ Base only checks abort in the loop that spawns the child
computations.

Number of Polls
248000

246000
244000
242000

240000

238000
236000
234000 l
232000

Granularity 3 Granularity 4 Granularity 5 Base
Polling Strategy

of Polls (x1000)

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 28 /33

Evaluation Performance

Polling Granularity Effects — # of Aborts

@ We're running our ported pousse code (with some instrumentation).
o Granularity N doesn't poll at the lowest N levels of the tree.

@ Base only checks abort in the loop that spawns the child
computations.

Number of Aborts
6000

5000

4000
3000
2000
1000

0

Granularity 3~ Granularity 4 Granularity 5 Base
Polling Strategy

of Aborts (x1000)

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 29 /33

Captendiey et Ol Gaxt
Outline

© Evaluation

@ Complexity Porting Old Code

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 30/ 33

Experience Porting Cilk Code

e We ported Cilk Pousse ! from cilk to cilk+-+.

Lines
Cilk Pousse 956
Cilk++ Pousse 1011
Increase ~5.07%

@ Pretty simple with the inlet translation.
e Most annoying part is adding the calls to poll.
@ This can use some tuning.
o Code is a little more difficult to read, but not too bad.
@ The real problem is that this changes the interface.

o Need to pass around the abort object.
o If it is used with an inlet, need to add continuation.

o Whole-code transformation is bad.

1people .csail.mit.edu/pousse/

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++

May 11, 2010 31/33

people.csail.mit.edu/pousse/

Outline

© Conclusions

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 32/33

Conclusions

Speculations on Speculative Parallelism

@ Speculative parallelism is definitely implementable as a library.
o Native runtime support might be more efficient/nicer.

o Lack of some abstraction features makes using it at the high-level
require interface changes.

@ ...but, using it locally at the leaves does not leak into the rest of the
code.

Ruben Perez & Gregory Malecha (MIT) Speculative Parallelism in Cilk++ May 11, 2010 33 /33

	A Recipe for Speculation
	Porting the Example
	Implementing abort

	Evaluation
	Performance
	Complexity Porting Old Code

	Conclusions

