Speculative Parallelism in Cilk++

Ruben Perez
MIT
rmperez@mit.edu

ABSTRACT

Backtracking search algorithms are useful in many domains,
from SAT solvers to artificial intelligences for playing games
such as chess. Searching disjoint branches can, inherently
be done in parallel though it can considerably increase the
amount of work that the algorithm does. Such parallelism is
speculative, once a solution is found additional work is irrele-
vant, but the individual branches each have their own poten-
tial to find the solution. In sequential algorithms, heuristics
are used to prune regions of the search space. In parallel
implementations this pruning often corresponds to abort-
ing existing computations that can be shown to be pursuing
dead-ends. While some systems provide native support for
aborting work, Intel’s current parallel extensions to C++,
implemented in the cilk++ compiler [Lei09], do not.

In this work, we show several methods for implementing
abort as a library in the cilk++ system. We compare our
implementations to each other and quantify the benefit of
abort in a real game AI. We derive a mostly mechanical
translation to convert programs with native abort into cilk++
using continuation passing style.

Keywords
Speculative parallelism, a-8 pruning, Cilk++

1. INTRODUCTION

Over the years many algorithms have been devised for solv-
ing difficult problems efficiently: graph algorithms such as
max-flow |[EK72] and shortest path [Flo62] and numerical
computations such as matrix multiplication [Str69]. Despite
much success addressing many problems, fundamental limits
govern the efficiency of algorithms for a range of important
problems that rely on search. In these cases, parallelism can
be used to mitigate some of the inefficiency of solving such
problems.

Many of these algorithms come from artificial intelligence

Gregory Malecha
Harvard University SEAS
gmalecha@cs.harvard.edu

and are based around backtracking search, often optimized
with heuristics. Algorithms such as these can benefit tremen-
dously from parallel processing because separate threads can
be used to search independent paths in parallel. We call
this strategy speculative parallelism because only one solu-
tion matters and as soon as that is found, all other work can
be stopped.

While simple to describe, this use of parallelism is not always
easy to implement. One parallel programming platform,
cilk5 [FLRYS§|, included language support for this type of
parallelism, but it has since been removed in more recent
versions of the platform adapted to C++, cilk++ |Lei09].
Our goal is to regain the power of speculative execution in a
way that is relatively natural to program with without the
need to modify the runtime library.

Contributions

In this work we consider the parallel implementation of algo-
rithms that rely on speculative parallelism in cilk++ [Lei09|.
We begin with a brief overview of the mechanisms for spec-
ulative execution in cilk5 (Section and then consider
one prominent use of the these mechanisms for developing
gam Al using a-8 pruning (Section [2.2). We then consider
our contributions:

e We present a technique for compositional speculative
execution in cilk++ which uses polling and can be built
as a library without any special runtime support (Sec-

tion .

e We present a mostly-mechanical translation from cilk5
code to use our library (Section [3.1)).

e We demonstrate several implementation strategies for
the library needed for our technique (Section |3.2).

e We compare the performance tradeoff of several imple-
mentations of our abort library (Section |4.1)).

e We determine the effect that polling granularity has
on performance (Section [4.2)).

e We attempt to quantify the difficulty of porting an
existing program that uses speculative execution to our
framework (Section [4.3)).

We conclude by considering the difficulty of analyzing pro-
grams with speculative execution and then describe several
avenues of future research.

max

Figure 1: Example of Alpha Beta Pruning

2. BACKGROUND

We begin with an overview of our target application, the
parallelization of a-(pruning, before describing how specu-
lative execution is incorporated into the cilkb programming
language.

2.1 Alpha-Beta Search

Alpha-Beta (a-f) search is an algorithm commonly used to
search a 2 player game tree [KM75]. A game tree is a tree
where nodes represent states of a game, and edges represent
the transitions from one game state to another, i.e. legal
moves in the game. Game states are ranked by a heuristic
static board evaluator which assigns a number that is meant
to encode a player’s preference for being in the board con-
figuration.

A naive game tree search algorithm, such as minimax, con-
siders possible game states at each level of the tree. It
assumes that one player, the maximizing player, wins the
game by getting to the game state with the highest value.
The other player, the minimizing player, wins by forcing the
maximizing player to a game state with a low value. The
player will always make the best moves possible; the maxi-
mizing player will choose game states with high values, and
the minimizing player will choose games states with low val-
ues.

The Alpha Beta algorithm keeps track of two values, alpha
and beta for each game state in the tree. The alpha value
represents a score that the maximizing player is guaranteed
to do better than, a lower bound on his possible score. The
beta value represents the lowest score the minimizing player
can force the other player to get, an upper bound on the
maximizing player’s score. With these values, we can tell
that a game state where alpha is greater than beta would
never be reached. Such a game state would mean that one
player is not playing the best moves possible, and allowed
the maximizing player to reach a game state where he is
guaranteed a higher score than another available move, the
move that yielded the beta value. For these game states,
there is no need to further explore its subtree, as we know
the move will never be reached. This elimination of work
is called alpha-beta pruning, as we essentially prune away
branches of the search tree. An example of such a pruning
is shown in figure [I] In figure [I] we see a small game tree
where a prune would occur. The left two leaves have been

evaluated to have values of 3 and 0, while the alpha beta
values, contained in a tuple, for the the root’s third child
are being determined. Having evaluated the other leaves,
we know that the the maximizing player can get at least a
three, hence that game state’s alpha value is three. Once
we evaluate the game state’s left child, with a value of 2,
we can say that the beta value is 2, as that now is an up-
per bound on the maximizing player’s score at that game
state. However, now we see a contradiction, where alpha
is greater than beta. Given that this state is reached, the
maximizing player is guaranteed to get less than or equal
to 2, because the minimizing player will always choose that
particular game state (or one that has a lower score). It
makes no sense for the maximizing player to ever choose to
go to this game state, since he has a better move available,
the root’s left most child with a value of 3. This we can
abort exploration of the rest of root’s right most subtree,
and save ourselves some work.

A simple parallelization of the algorithm would be to sim-
ply search the children of a game state in parallel. However,
such an implementation could execute work that a serial im-
plementation would not, by exploring branches of the tree
that serial version would have pruned away. At the time
we spawn, we cannot know whether this is the case, so we
speculate that such work will be useful, and search anyway.
If any spawned search does invoke the cutoff condition, then
we must terminate all of the other spawned threads, as they
are now performing useless work by exploring game states
that we will never reach. Thus we see why an abort mech-
anism is essential to an efficient parallel alpha beta search
algorithm, and speculative parallel programming in general.

2.2 Speculative Execution in Cilk5

MIT cilk5 [BJK'95, [FLR9S| includes an abort primitive
to support early termination of speculative work. To prop-
erly explain how these are used, we must introduce another
feature, inlets. An inlet is a local C function which shares
stack space with its parent function. It is declared inside
its parent function and is local to the scope of the parent
function. cilk5 allows an argument to a call to an inlet to
be a spawned computation. When the spawned computa-
tion returns, the inlet is called with the result. The cilkb
runtime guarantees that all inlets associated with a single
activation record run sequentially. This allows us to conve-
niently access local data to accumulate a result without the
need for explicit locking. Figure [2] shows an example of us-
ing inlets to implement non-deterministic choice. The code
interleaves two long computations and returns the value re-
turned by one of them.

The inlet (lines 7-10) takes the return value of one of the
speculated computations and stores it in the parents local
variable x (line 8). The inlet can then abort the remaining
computation because a value has been computed (line 9).
After the sync, we know that the inlet will have run at least
once, so the value in x is valid and we can return it.

3. COMPOSITIONAL SPECULATION

For many applications, such as exhaustive search, it is ac-
ceptable to have a single level abort that allows the entire
computation to be aborted; however, the structure of a-3
search requires the ability to abort individual subtrees of

1
2
3
4
5

[© 2 B

9
10
11
12
13
14
15
16
17

int f_1(void* args);

int £f_2(void* args);
int first(void* args) {
int x;
inlet void reduce(int r) {
X = r;
abort;
}
reduce (spawn f_1(args));
reduce (spawn f_2(args));
sync;
return x;
}

Figure 2: Using speculative parallelism in cilk5 to
implement non-deterministic choice.

Figure 3: Using hierarchical abort, we can abort any
subtree without affecting the rest of the tree.

the search tree. We refer to this as hierarchical abort. Fig-
ure[3] demonstrates how this type of abort works. While the
algorithm explores node 3, it notes that it can prune the en-
tire branch below node 1, but it can’t prune the computation
below node 2.

In order to implement abort without modifying the runtime
system, we implement abort via polling. The granularity of
polling will control the tradeoff between the responsiveness
of aborts and the overhead of supporting abort in the code.
We explore this relationship in greater detail in Section
In this section begin by describing an algorithm for translat-
ing programs that use inlets into programs that do not use
abort (Section . We then discuss a variety of implemen-
tation strategies for implementing the interface for polling

(Section [3.2).
3.1 Translating Inlets

We translate inlets using continuation passing style, a com-

mon code transformation in functional language compilers [AJ89).

The basic idea behind continuation passing style is to pass
the continuation (a function pointer) that should be used
to return the value to the caller. When we CPS-convert a
function of type:

T foo(...);

we rewrite it into a function of the following type:

T foo(..., void*x env, T& (*cont)(void*,T&));

Where cont is the pointer to the continuation and env stores
any state needed by the continuation.

Strictly speaking, this translation is not the full CPS-translation.

A full CPS-translation would change the return type to
void E| and would ensure that the function never returns.
We skip this to simplify the translation of code and localize
the necessary code changes.

In order to convert the body of foo to use continuation pass-
ing style, we convert return statements of the form:

return x;

into returns of function calls of the passed continuation:

return cont (env, x);

A good C++ compiler should be able to tail-optimize the ex-
tra function call ameliorating some of the overhead incurred
by the translation. This translation allows us to run the in-
let in the same thread that runs foo regardless of whether a
steal occurs.

In order to describe our translation in greater detail, we
consider the simple implementation of the non-deterministic
choice code presented earlier. Figure [4] shows the code and
its translation. In the code, the functions £_1 and £_2 are
meant to compute the same value with algorithms that are
efficient only only part of their domain. The first func-
tion speculatively evaluates both £_1 and £_2 in parallel and
returns one of their return values

Since first contains an inlet, we need to convert the func-
tions that it calls that use it into continuation passing style.
We elide the bodies of these functions since this transla-
tion was described previously. As can be seen from the
cilk5 code, the return values should be passed along to
the reduce inlet, so we must factor out reduce as the contin-
uation. Naively lifting this function is problematic however
because the variable x is scoped in the first function. Thus
we need the InletEnv structure to carry this value as well
as the mutex to ensure mutual exclusion and a handle to
our abort mechanism, embodied in the Abort class which we
describe in the next section.

The content of the inlet is mostly unchanged except that it
now must reference variables through the given environment
and, since cilk5 guarantees sequential execution of the in-
lets for an activation record, we acquire and release the mu-
tex in the environment. The abort statement is translated
into an invocation of the abort member function in the Abort
class which handles the abort.

The final aspect of the translation is to inject polling calls
into the speculated functions, £_1 and £_2. Since our im-
plementation relies on polling, the granularity of these poll
statements are exactly the granularity at which aborts can
occur. Long periods between polls will result in wasting
fewer cycles polling but will potentially allow more wasted

!Technically any type can be used since the function would
never return.

2If abort is implemented correctly, then the result will usu-
ally be the return value of the function that returned first,
though we don’t bother to guarantee this in our code.

cilk++ Code

cilk5 Code
2

lint f_1(void* args);
2int f_2(void* args);

3 5

1struct InletEnv { cilk::mutex m;

3int f_1(void* args,
4int f_2(void* args,

Abort abort; int x; };
int (xcont) (int ,voidx*),

int (xcont) (int ,voidx*),

void* env);
void* env);

. . . 6int first_inlet(int result, InletEnv* _env) {
N - -
4'"? first (void args) { 7 InletEnv* env = (InletEnv*)_env;
5 int x;
6 8 env->m.lock();
. . . 9
g |n}|{e1; ;I?Id reduce(int r) { 10 env->x = result; /)=
? 11 env->abort.abort(); // abort;
9 abort;
10 % 12
11 13 env->m.unlock();
12 reduce (spawn f_1(args)); 143
13 reduce(spawn f_2(args)); 15 . .
14 sync: - ’ 16int first(void* args) {
15 yne; 17 InletEnv env;
18 cilk_spawn f_1(args, first_inlet, env);
16 return x; . . .
19 cilk_spawn f_2(args, first_inlet, env);
17} .
20 cilk_sync;
21 return env.x;
22}

Figure 4: Translation of abort and inlet.

l1class Abort {

2public:

3 Abort ();

4 explicit Abort (Abort* p);
5 int isAborted() const;

6 wvoid abort();

Figure 5: The Abort interface.

computation to be done between aborting the child and hav-
ing the child actually stop working. We investigate this
trade-off further in Section [411

3.2 The Abort Library

The interface to our hierarchical abort library is given in Fig-
ure[Bl The default constructor is used to construct the root
of an abort tree. Since the abort tree will often mirror the
stack we rely on stack allocated Abort objects. The “copy-
constructor” is used to construct a new abort tree which is a
child of the given tree. We call this when we speculate on a
computation. Given the structure of the tree, the interface
exposes two member-functions, isAborted and abort. The
first determines if the current computation has been aborted
by determining if any parent in the tree has been asked to
abort. The second member-function, abort, actually marks
a tree as needing to abort.

The polling in our interface admits two general strategies for
implementing the interface: 1) abort just sets a flag while
isAborted polls up the tree until it reaches the root checking
for abort at each level; 2) abort can propagate the abort flag
downwards to all of its children and isAborted can simply
check the abort flag of the current level.

We begin with the implementation that polls upward (sketch

implementation given in Figure [f] The implementation is
completely straight-forward. In isAborted we or the current
abort flag with the result of polling up the tree (C++ short-
circuit semantics of || ensure that we don’t poll up if our
current flag is set). The abort function simply sets the cur-
rent abort flag. When trees are deep, we can amortize the
cost of recurring all the way up the tree by lazily propagat-
ing the abort flag downward. This functionality is enabled
by setting the POLL_UP_CACHE flag at compile time. The code
is similar except that we must ensure that we only update
the value of the aborted flag if we are setting it to true since
this operation causes potential race conditions that can alter
the desired behavior of abort.

The alternative implementation of abort is considerably more
complex due to the intricacies of manual memory manage-
ment in C++. Figure [7] shows a sketch implementation of
the interface. Naively, abort simply sets its aborted flag and
recursively calls abort on its children. When we speculate
by calling the second constructor, the new Abort object is
recorded in the parent. When an Abort object is destroyed,
it is removed from the parent’s children list. When abort
is called, the code iterates the list of children and aborts
each one. Note, however, that this can race with the chil-
dren’s destructor so we use a combination of compare-and-
swap and mutexes to protect against accessing freed mem-
ory. While a lock-free implementation would likely be su-
perior, the locking implementation is already fairly compli-
cated and we were unable to finish the lock-free version.

4. ANALYSIS

In this section we analyze the trade-offs inherent in our tech-
nique. At the high level, we are interested in three aspects:
First, the performance implications of the different Abort
implementations. Second, the effect of polling granularity
on the useful work that our system does. And third, we
wish to quantify the ease with which the technique can be

1class Abort {

2 Abort *parent;

3 bool aborted;

4

5 public:

6 Abort ()

7 aborted(false), parent (NULL) { }
8

9 explicit Abort(Abort* p)

10 : aborted(false), parent(p) { }

11

12 int isAborted () const {

13#ifndef POLL_UP_CACHE

14 return this ->aborted

15 Il (this ->parent &&

16 this ->parent->isAborted ());
17#else

18 if (this->aborted) return 1;

19 if (this->parent &&

20 this ->parent->isAborted ())

21 const_cast <Abort*>(this)->aborted = true;
22 return this ->aborted;

23#endif /¥ POLL_UP_CACHE */

24}

25

26 inline void abort() {

27 this ->aborted = true;

28}

29};

Figure 6: Implementation of Abort that polls upward.

applied to existing code.

4.1 Cost of Different Aborts

In Section we proposed three different implementations
of the Abort library. In this section, we do our best to com-
pare these implementations in as fair a manner as possible.
We begin at a theoretical level by considering the amount of
work performed by each of the operations. Since both abort
and isAborted are sequential in all of our implementations,
we consider only the amount of work done.

Consider first the push-down implementation in which the
abort propagates the abort downward and isAborted simply
checks a flag. It is easy to see that isAborted is constant
time while abort takes time proportional to the size of the
tree being aborted (|C).

€ 9(lc)
e o1

abort
isAborted|

In this implementation, abort will be considerably more ex-
pensive than isAborted; however, abort does work propor-
tional to the amount of work that is saved by the abort
since each node can be aborted only once and, in theory,
once a node is aborted, no additional work is done at that
node.

The implementation of poll-up has the opposite tradeoff.
The abort procedure is constant time making it cheap to
abort even a large subtree. Instead the cost is paid in more
expensive isAborted calls. The abort procedure takes time
linear in the depth of the tree (log|S|) being aborted or lin-

l1class Abort {

2 list<Abort*> children;
3 Abort** parent;

4 bool aborted;

5

6 cilk::mutex m;

7

8 private:

9 void registerListener (Abort* res) {
10 m.lock();

11 if (this->aborted) {
12 res->parent = NULL;
13 res->aborted = true;
14 } else {
15 children.push_back(res);
16 res->parent = &(*children.end())
17 }
18 m.unlock ();
19 }
20
21 public:
22 Abort () aborted(false), parent(NULL) { }
23
24 Abort (Abort* parent) {
25 parent->registerListener (this);
26}
27
28 “Abort () {
29 if (this->parent &&
30 ! __bool_cas(this ->parent, this, NULL)) {
31 while (!'this->aborted);
32 m.lock ();
33 m.unlock ();
34 }
35 %}
36
37 inline int isAborted() const {
38 return this ->aborted;
39 }
40
41 void abort () {
42 Abort*x tmp = this->parent;
43 if (tmp && !__bool_cas(tmp, this, NULL))
44 return;
45
46 m.lock ();
47
48 if (this->aborted) {
49 m.unlock ();
50 return;
51 }
52
53 this ->aborted = true;
54
55 for (iterator itr = children.begin();
56 itr != children.end(); itr++) {
57 Abort* r = *xitr;
58 if ('r) continue;
59 if (__bool_cas(&*itr, r, NULL)) {
60 r->abort ();
61 }
62 }
63 m.unlock ();
64 }
651};
Figure 7: Sketch implementation of Abort that

pushes the abort flag down.

Distribution of Time
Tree Height 14, Branching Factor 4

10000

I Aborted Poll(x1)
9000 L Abort

B Poll (x100)
8000 W Buid

7000
6000 3838
5000
4000

3000

Processor Ticks (x1000000)

2000
1000

Poll Up Poll Up (Caching) Poll Down
Abort Method

Distribution of Time

Tree Height 20, Branching Factor 2
6000

W Aborted Poll(x1)
[Abort

B Poll (x100)

W Buid

5000

4000

3000

2000

Processor Clock Ticks (x1000000)

1000

Poll Up Poll Up (Caching) Poll Down
Abort Method

Figure 8: Time for building, polling and aborting a tree.

ear in the depth of the entire tree if the node is not aborted.

abort; € O(1)
isAborted; € O(logl|S|)

The benefit of using one algorithm or another will depend on
a variety of factors including: the amount of polling that the
system does and the size of trees being aborted. Therefore,
we consider the following experimental setup. We perform,
in parallel, a breadth-first construction of an abort tree of
height h and branching factor b, gathering the leaves into a
list (Build). We then randomly permute the list in order to
avoid some of the cache-effects. Considering all of the leaves
in parallel, we poll 100 times at each leaf (Poll (x100)).
Note that these nodes are not aborted yet. We then abort
the root node (Abort). Finally, we poll a single time at
each leaf, noting that this time the node is aborted. Figure
shows the time that each of these phases takes in processor
clock ticks.

The difference in tree size and shape drastically changes
whether the poll-up or push-down implementation is more
efficient. When the tree height is 14 with a branching fac-
tor of 4, poll-up is considerably faster than poll-down, but
this changes completely when increasing the tree height to
20 and decreasing the branching factor to 2. It appears that
the cost of polling repeatedly doesn’t overcome the cost of
the sequential abort until the tree height is quite large.

Note also the difference between the orange and green seg-
ments. Even on the naive poll-up strategy polling up 100
times only takes twice as much time as polling up once when
the tree height is 14. This suggests that subsequent poll-ups
are essentially free which is most likely due to caching effects.
Traversing the tree upward a second time simply results in
14 more hits to the L1 cache which is very cheap on current
hardware.

Finally, we note that while the caching is meant to be an
optimization on the poll-up strategy, it actually degrades
performance considerably. This is likely due to the added
complexity of the code which requires several jumps in addi-
tion to the recursion. The graph of height 20 suggests that

this overhead is proportional to the size of the tree, since it
is not significant for this smaller test, but predominates in
the larger tree test case.

4.2 Varying the Frequency of Polls

One additional variable common to all three polling meth-
ods is how often polling should be performed. The cost of
polling, as elaborated on in the previous section, is not triv-
ial, but polling less frequently means aborted threads waste
time by performing useless work. To measure this effect we
ran the ported Pousse code using our poll-up strategy with-
out caching and vary the frequence that client code poll.

The implementation uses the iterative deepening search strat-
egy which performs the standard a-03 search to a given level d
and iteratively increases d until time runs out. This strategy
ensures that there is always a decent, valid move. Because
aborts that occur closer to the leaves result in less work be-
ing saved, there should be a tradeoff between the depth of
polling and the amount of work that is done.

We measured the tradeoff between work and polling depth
by considering the number of nodes that different polling
strategies were able to search. For our tests, the search
algorithm was given 8 seconds per turn, a roughly constant
amount of that is used for input and output. The strategies
that we tested are:

e Aggressive polls at the beginning of and periodically
throughout search.

e Coarsen-n polls at the beginning of search when the
remaining depth is greater than or equal to n. For
example, Coarsen-2 does not poll at the last two levels
of the tree.

e Spawn polls only before a cilk_spawn statement and

thus avoids spawning extra work, but does not abort
currently running work.

The results of our trials are shown in Figure [0}

Total Nodes Computed

500
400
300
200
100

0

Coarsen-4

of Nodes Visited (x10000)

Aggressive Coarsen-3
Polling Strategy

Coarsen-5 Spawn

Percent of Polls that Lead to Aborts

2.50%

2.00%

1.50%
1.00%
0.50%
0.00% .

Aggressive Coarsen-3 Coarsen-4 Coarsen-5 Spawn

#Aborts / #Polls

Polling Strategy

Figure 9: Pousse performance modifying the granularity of polling.

Code Type Lines of Code
cilk5 Pousse 956
Inlet Code 41
cilk++ Pousse 1011
Env. Decls. 15
Inlet Code 52
Code Increase 5.07%

Figure 10: Code metrics for porting cilk5 Pousse to
cilk++ Pousse.

We note that the more aggressively we poll the fewer nodes
we are exploring. This is because we are wasting more of
our time doing polling which leaves less time for the actual
search. We peak at Coarsen-3 which does significantly bet-
ter than both Coarsen-2 and Coarsen-4.

Since polls are purely wasted work if they don’t result in
an abort, we consider the percentage of polls that lead to
aborts. The graph shows that this percentage peaks at 2%
which agrees with the total nodes computed graph for the
best strategy. The percentage of polls that lead to abort
is considerably lower for the Aggressive polling strategy.
This, at least partially, explains their low node counts be-
cause a larger portion of their polls are wasted.

A confounding factor with these tests is that the static eval-
uator, the function that heuristically assigns to a value to
a game state, is relatively cheap for the Pousse game. For
many other games, this may not be the case and could im-
pact the effectiveness of not polling at the leaves of compu-
tation where the static evaluator is performed.

4.3 Ease of Use

In addition to quantitatively analyzing the performance of
our strategy, it is also important to consider the amount of
work that is required to make use of our technique. To mea-
sure this, we consider the amount of work that was required
to port the existing cilkb Pousse code to work with cilk++.
Figure gives the quantitative difference in code metrics
for porting the code. These numbers do not include the size
of the Abort library.

Our experience shows a 5.07% increase in the number of lines

of code (an increase of 63 lines). This seems fairly reasonable
considering that we are implementing a primitive language
construct by a code transformation. On a more qualitative
note, the transformation was relatively painless, our initial
translation had no bugs outside of the Abort library. In
addition to making porting code easy, this also means that
reading and maintaining the code is only slightly more diffi-
cult than reading and maintaining the original cilkb Pousse
code. The largest difference here is the need to explicitly de-
note which variables need to be accessible in the inlet so that
they can be explicitly placed within the structure passed as
the continuation environment.

While the transformation is simple to perform, the prob-
lem with it is that it is not modular because it changes
the signatures of functions which use the abort mechanism.
This breaks the possibility for separate compilation without
explicit annotations specifying which functions should be
compiled to work with inlets and and abort. However, if the
need to abort does not need to be exposed across interface
boundaries, it can be effectively isolated.

The other problem with the polling strategy in general is de-
termining when to poll. Our results in Section suggest
that polling relatively infrequently is quite effective, at least
for our code. However, as we noted above, this might not
always be the case. If static board evaluation or trying a
move was more expensive it might be better to poll more of-
ten in order to avoid these overheads. In addition, as we saw
in the previous section, it is often beneficial to change the
polling strategy at different levels in the search tree based
on how much work will be saved. Retrofitting this into some
algorithms may require additional work.

S. CONCLUSIONS

We demonstrated how speculative parallelism in the style
of cilk5 using inlet and abort can be implemented as a
simple CPS translation with a small amount of additional
work threading through an Abort object. Our results show
a performance improvement over the same «a-0 search algo-
rithm that does not use abort. In addition, our experiences
suggest that the translation is relatively easy to carry out
when the transformation is local to a single module.

In general analyzing parallel programs is more difficult than
analyzing sequential programs, but we found that analyzing
programs that use speculative parallelism is even harder.
The primary difficulty is because small changes in schedul-
ing decisions can drastically affect the amount of work per-
formed by the system if analyzing a particular node triggers
a large abort. Perhaps one way to analyze this is to consider
a notion of virtual work which is the amount of work that
would be done by the mini-max algorithm if it was allowed
to complete the current depth of the tree. In our analysis,
we attempted to control this when we compared the abort
implementation; however, we found that this strategy con-
tributed relatively little insight into the Pousse code because
the frequency of aborts is much more random.

5.1 Future Work

Our implementation focuses heavily on the porting of cilk5
Pousse. This is good because it has the behavior of a real
game, but it does not incorporate a very sophisticated/ex-
pensive static board evaluator like other games. Especially
since the polling method requires making choices about how
often to poll, we believe that further exploration of a game
that uses a more sophisticated static board evaluator would
shed additional light on problems likely to be encountered
in parallelizing other code.

In cilk5 abort is implemented in the runtime system us-
ing signals. This is nice because it avoids the need to poll
which is especially painful because it obviates the need to
tune an extra polling frequency parameter. In addition, im-
plementing inlets via a compiler transformation is conve-
nient because the compiler can mechanically generate addi-
tional code to make speculating across module boundaries
more reasonable and ensure returns through continuations
are compiled efficiently as tail-calls whenever possible. We
believe that it would be beneficial to re-implement abort and
inlet in the runtime using signals in order to compare the to-
tal performance overhead of polling. In addition to the com-
piler support, we belive that additional tools for gathering
statistics such as the number of times aborts occurred and
estimates for the amount of work that was aborted would
greatly help developers in understanding their algorithms
and how best to achieve efficient implementations.

6. REFERENCES

[AJ89] A. W. Appel and T. Jim. Continuation-passing,
closure-passing style. In POPL ’89: Proceedings
of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming
languages, pages 293-302, New York, NY, USA,
1989. ACM.

[BJK'95] Robert D. Blumofe, Christopher F. Joerg,
Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: an
efficient multithreaded runtime system.
SIGPLAN Notices, 30(8):207-216, 1995.

[EK72] Jack Edmonds and Richard M. Karp.
Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM,
19(2):248-264, 1972.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path.

Commun. ACM, 5(6):345, 1962.
[FLR98] Matteo Frigo, Charles E. Leiserson, and
Keith H. Randall. The implementation of the
cilk-5 multithreaded language. SIGPLAN
Notices, 33(5):212-223, 1998.
Donald E. Knuth and Ronald W. Moore. An
analysis of alpha-beta pruning. Artificial
Intelligence, 6(4):293 — 326, 1975.
Charles E. Leiserson. The cilk++ concurrency
platform. In DAC ’09: Proceedings of the 46th
Annual Design Automation Conference, pages
522-527, New York, NY, USA, 2009. ACM.
Volker Strassen. Gaussian elimination is not
optimal. Numerische Mathematik, 13:354—-356,
1969.

[KM75]

[Lei09]

[Str69)

	Introduction
	Background
	Alpha-Beta Search
	Speculative Execution in Cilk5

	Compositional Speculation
	Translating Inlets
	The Abort Library

	Analysis
	Cost of Different Aborts
	Varying the Frequency of Polls
	Ease of Use

	Conclusions
	Future Work

	References

