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The Problem

Single Source Shortest Paths (SSSP) Given a graph
G = (V ,E ) with non-negative edge weights and a starting vertex
v0, find the shortest path from v0 to every v ∈ V .
Some Definitions:

I The weight of a path is the sum of the weights of the edges
along that path.

I The length of a path is the number of edges along the path.

I A “shortest path” from v0 is the minimum weight path
from v0.

I The distance from v0 to v , v .dist, is the sum of the weights
on the minimum weight path from v0 to v .



Dijkstra’s Algorithm

Use a priority queue keyed on distance.

1. Set v0.dist = 0 and v .dist = ∞ for all v 6= v0.

2. Create priority queue Q on all vertices in V .

3. While Q is not empty:

3.1 v = Extract-Min(Q)
3.2 For all u such that (v , u) ∈ E

3.2.1 u.dist = v .dist + w(v , u), where w(v , u) is the weight of
edge (v , u).

3.2.2 Decrease-Key(Q, u, u.dist)

Running Time: O(E · TDecrease-Key + V · TExtract-Min).
Can we parallelize Dijkstra’s Algorithm?

I Priority queue is a serial bottleneck.

I Only definitely useful operation is to process the minimum
element of priority queue at each step.



Gabow’s Scaling Algorithm

Idea: Consider the edge weights one bit at a time.

I The weight of the minimum weight path from v0 to v using
just the most significant bit of the weight is an approximation
for the weight of the minimum weight path from v0 to v .

I Incrementally introduce additional bits of the weight to refine
our approximation of the minimum weight paths.

I Once all of the bits of the weights are considered, we’re done.



Gabow’s Scaling Algorithm

I At each iteration, for some edge (u, v) we define the
difference in approximate distances u.dist − v .dist to be the
potential across (u, v).

I We define the cost of an edge to be its refined weight at some
iteration plus the potential across it:
li (u, v) = wi (u, v) + u.dist − v .dist.

I Since the sum of costs along a path telescopes, these costs
preserve the minimum weight paths in the graph.

I We guarantee that the cost of an edge is always nonnegative.

I => We can repeatedly find minimum weight paths on graphs
of cost values.



Optimizing Gabow

We can restrict the size of the priority queue used on each step.

I The length of a path with p edges can increase by at most p
on each subsequent iteration of Gabow.

I Let pi ,max be the length of the longest minimum weight path
after the ith iteration of Gabow.

I The sum of the costs on a minimum weight path during the
i + 1st iteration can be no more than pi ,max.

I The ith iteration of Gabow can find the minimum weight
paths using a monotone priority queue with only pi−1,max bins.



Parallelizing Gabow

Can we do it?

I The priority queue must store V items in pi ,max bins.

I pi ,max ≤ V , but we expect pi ,max < V in many cases.

I ⇒ We expect bins to contain multiple items.

I We can process the contents of each bin in parallel.



Parallelizing Gabow

Issues with parallelizing Gabow:

I Parallel threads will try to set the distance for a vertex
simultaneously. We want the minimum distance to win.

I Parallel threads will be adding vertices to a priority queue in
parallel. We want the priority queue to work properly anyway.

I A vertex may have many neighbors connected with zero-length
edges. We need to manage these neighbors efficiently.



Parallelizing Gabow

Race condition for distance value: “Double-setting”

I Let the race be.

I When removing a vertex from its minimum bin in the priority
queue, ensure its distance value is correct before proceeding.

I At the point when a vertex is removed from its minimum bin,
we know its correct distance.

I ⇒ The non-benign race becomes benign.



Parallelizing Gabow

Parallel priority queue:

I Don’t use a Decrease-Key operation; just Insert.

I When we encounter a vertex we have evaluated already, skip
it.

I Currently, we used a locked data structure for each bin to
resolve a race for inserting into the same bin.

I Alternatively, use TLS for each bin to remove contention on
writing to the same bin.

I Parallel threads can insert into the queue with no contention.



Parallelizing Gabow

Zero-weight edges:

I Keep two buffers for each bin. Fill the second while processing
the first.

I Once the first is done, if the second is non-empty, swap the
buffers and repeat.

I If the second buffer gets sufficiently large, spawn off a
separate thread to process it.



Theoretical Performance of Gabow

Let G = (V ,E ) be a simple connected weighted directed graph.
Let W be the maximum edge weight in G . Let ∆ be the
maximum out-degree of a vertex v ∈ V .

I Work: Θ(E lgW ).
I Span: O(V lgW lg ∆) worst-case.

I Bits of weight are processed serially in phases. Θ(lgW )
I Within each phase, each bin in the priority queue is processed

serially.
I Within a bin, the longest chain of vertices connected by

zero-weight edges is processed serially.
I Edges on minimum weight paths from previous phase may

have weight of 0 or 1.
I In the worst case, every vertex appears in some bin’s longest

chain of zero-weight edges once.
I Total length of zero-weight edge chains in all bins is O(V )

worst case.
I Each vertex has ∆ neighbors to explore, which requires

O(lg ∆) span.



Theoretical Performance of Gabow

Suppose we have random edge weights, and let D be the length of
the longest minimum weight path in any phase of Gabow.

I Work: Θ(E lgW ).
I Span: O(D lgW lg ∆ lgV /D)

I Each phase must examine D bins serially.
I The length of the longest zero-weight edge chain in a bin is

O(lgV /D) with high probability.
I Total length of zero-weight edge chains in all bins is

O(D lgV /D).

I Ω(E/V lg ∆) parallelism worst-case.

I Ω(E/(D lg ∆ lgV /D)) parallelism with random edge weights.



Empirical Performance of Gabow

We tested our parallel Gabow implementation on a few input
graphs, including the New York and San Francisco Bay road
networks.

I First, we collected metrics on the priority queue data structure
during Gabow’s execution, including Bin size, Queue size, and
longest zero-weight edge chain.

I Second, we compared Gabow’s serial and parallel performance
to a simple Dijkstra implementation.

The data presented here comes from running Gabow on the San
Francisco Bay road network. V = 321270, E = 800172.
Parallelism according to Cilkview: 4.76 (2.29 burdened)



Empirical Performance of Gabow
Number of Evaluated Vertices in Each Bin (San Francisco Bay
road network)
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Empirical Performance of Gabow
Number of Ignored Vertices in Each Bin (San Francisco Bay road
network)
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Empirical Performance of Gabow
Maximum Length of Zero-Weight Edge Chain (San Francisco Bay
road network)
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Empirical Performance of Gabow

Queue Size (San Francisco Bay road network):

Min 523

Median 1026

Mean 20119

Max 321270 = V



Empirical Performance of Gabow

Performance on San Francisco Bay road network:

Dijkstra (ms) Gabow, 1 proc (ms)
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Future Work

I Remove lingering unnecessary serial code in parallel Gabow
implementation.

I Use TLS for each bin in the priority queue, rather than a
locked vector, to remove lingering contention.

I Investigate memory bandwidth issues.

I Experiment with alternative graph layouts.



Empirical Performance of Gabow as of 05-10-2010

Performance on random graph, V = 1.5M,E = 4M
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Empirical Performance of Gabow as of 05-10-2010

Performance on road network for northeastern U.S.
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