
Parallel Single-Source Shortest Paths

Kevin Kelley
Tao B. Schardl

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar Street

Cambridge, MA 02139

ABSTRACT

We designed and implemented a parallel algorithm for solving
the single-source shortest paths (SSSP) problem for graphs with
nonnegative edge weights, based on Gabow’s scaling algorithm
for SSSP. This parallel Gabow algorithm attains a theoreti-
cal parallelism of Ω(E/(V lg∆ lgE/D)) in the worst case and
Ω(E/(D lgV/D lgE/D lgDelta) with high probability on a random
graph. In practice this algorithm decent parallelism on random
graphs and outperforms a simple Dijkstra implementation on six
or more processors.

1. INTRODUCTION
The single-source shortest path (SSSP) problem on graphs with

nonnegative edge weights is a common problem in graph theory
that has been studied since the 1950s. This problem arises in a host
of real-world applications, particularly in routing.

Given a weighted, directed graph G = (V,E) with vertex set V =
V (G) and edge set E = E(G), a weight function w : E → R+, and
a starting vertex v0, the SSSP problem is to compute the “shortest
path weight” from v0 to all u∈V . The weight of a path is the sum of
the weights of edges along that path, and the shortest path weight

from u ∈V to v ∈V is the minimum weight for any path from u to
v, or ∞ if no path exists from u to v. The distance to a vertex v ∈V

is the shortest path weight from v0 to v.
The canonical serial algorithm for solving the SSSP problem

on graphs with nonnegative edge weights is Dijkstra’s algorithm,
whose pseudocode is presented in Figure 1. This algorithm stores
the vertices of G in a minimum priority queue Q keyed on the best
known distance to each vertex. A common implementation for this
priority queue is a k-ary heap. A vertex v has been evaluated when
all outgoing edges from v . Dijkstra’s algorithm loops over the con-
tents of Q until all vertices have been evaluated. the repeatedly
extracts from the priority queue the unevaluated vertex u with the
minimum known distance from the priority queue in line 6, exam-
ines u’s adjacency list in line 7, and recomputes minimum known
distances for each neighbor of u in lines 8–10. One can prove that
greedily evaluating the unevaluated vertex with minimum distance
yields the correct shortest path distances for graphs with nonnega-
tive edge weights.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

DIJKSTRA(G,w,v0)

1 for each vertex u ∈V (G)
2 u.dist = ∞

3 v0.dist = 0
4 Q = V (G)
5 while Q 6= /0

6 u = EXTRACT-MIN(Q)
7 for each vertex v ∈V (G) such that (u,v) ∈ E(G)
8 if v.dist > u.dist+w(u,v)
9 v.dist = u.dist+w(u,v)

10 DECREASE-KEY(Q,v,v.dist)

Figure 1: Pseudocode for Dijkstra’s SSSP algorithm for graphs with non-
negative edge weights. At all times, the distance of a vertex u, u.dist, is the
shortest path weight known from v0 to u. We use a minimum priority queue
Q keyed on the distance to each vertex.

Dijkstra’s algorithm does not readily lend itself to parallelization
however, because it relies on a priority queue. Because evaluating
the vertex at the head of the priority queue may change the order of
elements remaining within the priority queue, it is not necessarily
correct or efficient to evaluate more than the head of the priority
queue on each iteration. Substantial research has been done into
parallelizing Dijkstra’s algorithm, but these strategies often rely on
known qualities of the graph being searched.

In this paper we present a novel parallel solution to the SSSP
problem, based on Gabow’s scaling algorithm for SSSP [4]. This
algorithm makes use of a simpler data structure for its priority
queue, which naturally exposes available much of the parallelism
in the problem. Furthermore, the only assumption this parallel

Gabow algorithm uses is that all edge weights in the graph are in-
tegral, which is a reasonable assumption for SSSP problems being
solved on modern computers.

The remainder of this paper is organized as follows. Sec-
tion 2 presents Gabow’s original scaling algorithm, while Section 3
presents the strategy for parallelizing this SSSP algorithm. Sec-
tion 4 describes several optimizations we used in implementing
parallel Gabow. Section 5 presents some theoretical analysis for
the parallelism in parallel Gabow, while Sections 6 and 7 present
our empirical findings for the available parallelism and real-world
performance of parallel Gabow, respectively. We conclude in Sec-
tion 9.

2. GABOW’S SCALING ALGORITHM

FOR SSSP
Gabow’s algorithm is a classic scaling approach to the single-

source shortest paths problem. In effect, we determine shortest
paths to each vertex in a graph by iteratively refining approxima-
tions of those shortest paths.

Initially, we have the trivial zero-weight path to the source and
no path to each other vertex. We begin each iteration by expos-
ing an additional bit of the weight of each edge starting from the
highest-order bit. Then, we calculate new temporary weights for
each edge by using the shortest-path weights from the previous iter-
ation as a cost function. Finally, we perform a single-source short-
est path computation on this reweighted graph. The final shortest-
path weight to each vertex is found by accumulating the shortest-
path weights from each iteration. The paths corresponding to those
weights are the same as those from the final iteration.

In the first iteration, no bits of the edge weights are exposed and
we have no existing paths, so the temporary weight of each edge is
simply zero; we are, in effect, simply finding the connected com-
ponent of the graph containing the source vertex. In the second
iteration, only the highest-order bit of each path weight is exposed,
and so on.

GABOW(G,w,v0)

1 for each vertex u ∈V (G)
2 u.dist = ∞

3 i = lg(max{range(w)})
4 v0.dist = 0
5 Q = /0

6 INSERT(Q,v0,0)
7 while Q 6= /0

8 u = EXTRACT-MIN(Q)
9 for each vertex v ∈V (G) such that (u,v) ∈ E(G)

10 if v.dist > u.dist+wi(u,v)
11 v.dist = u.dist+wi(u,v)
12 INSERT(Q,v,v.dist)
13 while i > 0
14 i−−
15 for each vertex u ∈V (G)
16 u.extra-dist = ∞

17 v0.extra-dist = 0
18 Q = /0

19 INSERT(Q,v0,0)
20 while Q 6= /0

21 u = EXTRACT-MIN(Q)
22 for each vertex v ∈V (G) such that (u,v) ∈ E(G)
23 l(u,v) = wi(u,v)+2(u.dist−v.dist)
24 if v.extra-dist > u.extra-dist+ l(u,v)
25 v.extra-dist = u.extra-dist+ l(u,v)
26 INSERT(Q,v,v.extra-dist)
27 for each vertex u ∈V (G)
28 if u.dist < ∞

29 u.dist = 2×u.dist +u.extra-dist

Figure 2: Pseudocode for Gabow’s scaling algorithm for SSSP. The dis-
tance of a vertex u, u.dist, is the shortest path weight from v0 to u. In this
algorithm wi(u,v) = w(u,v)>>i.

On first examination, this might appear to be far worse than a
much simpler algorithm such as Dijkstra; after all, we have to per-
form lgW iterations, and each one requires that we solve an SSSP
subproblem. However, there are several observations we can make
regarding the structure of these subproblems that both will allow us
to make them less expensive to solve and will expose parallelism
which, as previously discussed, is absent from Dijkstra.

Bounding the size of the priority queue

We assert that the temporary weight of any edge which was on the
previous iteration’s shortest path is at most one. Consider the edge
(u,v) which is on the shortest path to v. Since the shortest path
to v necessarily includes the shortest path to u, the weight of the
shortest path to v is the sum of the weight of the shortest path to u

and the weight of (u,v).
When, in the next iteration, we use these shortest-path weights as

a cost function, the temporary weight of (u,v) is therefore clearly
zero. We proceed to expose an additional bit of the cost of (u,v),
which becomes the low-order bit of that cost. This is effectively
added to the temporary weight; if the bit is zero, the temporary
weight remains zero, and if it is one, the temporary weight becomes
one.

Another fundamental observation is that the length of any short-
est path in a graph with nonnegative edge weights is at most V .
Gabow [4] presents only the bound E; in truth, the bound is the
minimum of these two, but since the algorithm effectively only
operates on a connected subgraph, V is almost always the tighter
bound. In any case, the intuition is nearly the same. Since edge
weights are nonnegative, a shortest path cannot have cycles and
thus each vertex must be visited at most once.

These two pieces of information together give us a bound of V

on the maximum length of any shortest path in each iteration of the
scaling algorithm. This bound is clearly not present in Dijkstra. It
is rather important to the performance of our implementation in that
it allows any insertion in to the priority queue with a path weight
greater than V to be instantly discarded.

Further pruning the queue

We present a second bound on the weight of any shortest path
which is significantly tighter, although not asymptotically so.
Imagine that we are aware of d, the maximum length of the shortest
path from the previous iteration. With the same reasoning about the
maximum weight of any edge on the previous iteration’s shortest
paths, we can conclude that we may safely discard any candidate
path whose weight exceeds d.

We present statistics demonstrating that d is often a fraction of a
percent of V .

3. PARALLELIZING THE ITERATIVE

STEP
Some portions of the iterative step are trivial to parallelize. For

example, bits can be exposed in parallel; temporary weights can
be computed in parallel; and the cost function can be applied in
parallel. Each of these operations is performed on a single vertex
in isolation. However, by far the most expensive part of each step
is the process of finding shortest paths once the edges have been
reweighted.

Consider the priority queue around which these SSSP subprob-
lems are based. In the queue, candidate paths with equal weights
can be arbitrarily reordered without any ill effect. We assert that,
with some caveats, they can also be processed in parallel.

The parallel, bounded priority queue

We present a variant of the priority queue which we call a parallel,

bounded priority queue. This queue has a bounded size n, and
consists of bins numbered from 0 to n− 1. It supports only two
operations; INSERT(Q,x,k) places an item x with key k into the
queue Q, and EXTRACT-MIN(Q) returns the contents of the lowest-
indexed nonempty bin.

Since edge weights are nonnegative, processing the contents of

a bin i can only generate insertions into bins j ≥ i. Consequently,
to evaluate the entire queue, each iteration of Gabow’s algorithm
only needs to consider monotonically increasing bin indexes. This
monotonicity allows Gabow’s algorithm to use a simple data struc-
ture for the priority queue, which exposes parallelism in the algo-
rithm.

The priority queue’s bins must support parallel insertions. Ini-
tially we implemented this in a simple fashion with locks and STL
vectors. However, we replaced this with a lock-free data structure,
the TLSSet, which is described in more detail in subsequent sec-
tions.

Zero-weight edges and chains

One wrinkle in this approach is the existence of zero-weight edges,
which appear even if none exist in the original graph. (For exam-
ple, any time we expose a zero bit on an edge which was part of a
shortest path, the result is a temporary weight of zero.) When we
explore one of these edges, it is not immediately obvious how best
to proceed. Making matters worse, we possibly encounter chains

— successive zero-weight edges forming a zero-weight subpath.
Chains are unavoidably explored serially.

We could immediately explore zero-weight edges (for example,
by recursion); however, as with any serializing approach, this re-
duces parallelism by creating an imbalance in the division of la-
bor amongst workers. Instead, we add them to a temporary bin;
when we finish processing the initial bin, if the temporary bin is
nonempty, we process it before extracting the next bin from the
priority queue. This allows us to preserve as much parallelism as is
possible.

Making an inconvenient race benign

In processing the contents of a bin in parallel, we create one race
condition which is particularly challenging to resolve. We explain
the race, present a fix, and argue that the fix makes the race benign.

Recall that, as we solve SSSP at each step, we maintain an array
of the best path weights we have found so far. Whenever we find
a new candidate path and perform an insertion into the queue, we
must also update this shared state.

Imagine that, before examining a bin, the shortest path to vertex v

is of weight i, and that upon examining the bin, we find two shorter
paths of lengths j and k such that i > j > k. It is possible that paths
j and k are discovered simultaneously by two different workers.

Each worker sees the existing shortest path of weight i and be-
lieves that it has discovered a new shortest path. Each worker
performs a queue insertion, and then each attempts to update the
shared state. This potentially produces two undesirable effects.
First, we have a worthless candidate path of weight j in the queue;
and second, if the worker which discovered the weight- j path won
the race, the shared state will describe the best known path to v as
being of weight j. If, subsequently, additional paths to v whose
weight is less than j but greater than k are discovered, those will be
added to the queue as well despite their being equally useless.

However, the shortest candidate path to v will be the first one
explored because the bins are examined in order. Therefore, if we
update the shortest path array again upon discovering v in bin k,
when we find v in later bins we can immediately know to ignore it.
Vertex v may appear multiple times in a single bin, but since each
appearance will cause the same value to be written to shared state,
this race is also benign.

Thus this race, suitably fixed, will not threaten correctness. We
have empirical evidence which suggests, based on the number of
queue items discarded by this test, that it also has little impact on
performance.

4. ADDITIONAL IMPLEMENTATION

OPTIMIZATIONS

The first iterative step

In our implementation, we special-case the first iterative step. This
step is unique because every edge has a temporary weight of zero.
Therefore, the SSSP problem in this step is effectively reduced to a
traversal of the graph, which we can do without involving a priority
queue. This makes sense–if all edge weights are zero, then every
candidate path would wind up in the 0th queue anyway.

We can also find d, the maximal shortest path length, which we
need to size the queue for the next iteration; it is simply the longest
path to any vertex in the graph, which is the same as the number of
times we have to iterate before running out of zero-weight edges to
explore (the maximal chain length).

Lazy computation of temporary edge weights

One simple change we were able to make that had a profound per-
formance impact was to postpone the computation of temporary
edge weights until they were actually needed. Since we explore
each edge at most once, this allows us to avoid more computation
that is strictly necessary. This also reduces the size of the edge data
structure by a third.

Making queue bins lock-free

The bins in our priority queue are implemented as a special type of
multiset which we call a staging set. A staging set supports three
operations. When it is first created, it supports only INSERT(x),
which inserts an item into the set. After we FINISH a set, we are
no longer allowed to add new elements to it, but we can iterate over
the contents of the set using STL-compatible BEGIN and END
operators. No ordering guarantees are provided.

We found that this data structure was repeatedly useful. We can
have a group of worker threads contribute to building a set and
then divide-and-conquer the contents of the set, such as with a
cilk_for loop.

Our initial implementation of this data structure, the
LockingSet, is very simple; it is simply an STL vector whose
INSERT operator is synchronized with a mutual exclusion lock.
The FINISH operator does nothing.

We replaced this with a lock-free implementation, the TLSSet.
As its name might suggest, this data structure utilizes thread-local
storage to allow lock-free parallel insertions. The FINISH operator
computes offsets that allow the combined contents of the set to be
uniformly distributed.

5. THEORETICAL ANALYSIS OF

PARALLEL GABOW
This section presents a theoretical analysis of the performance

of our parallel Gabow algorithm. For simplicity of analysis, we as-
sume that each vertex in the graph appears at most once within each
bin in the priority queue during each iteration of parallel Gabow.

First we bound the work of parallel Gabow.

LEMMA 1. Let G = (V,E) be a connected, directed graph. Let

w : E → Z+ be a weight function on E = E(G), and let W be

the maximum weight in the range of w. The total work of parallel

Gabow is Θ(E lgW).

PROOF. The ith iteration of parallel Gabow computes the short-
est paths in G when only the top i bits of every edge weight are
used. The number of iterations of parallel Gabow that must be run

to compute the exact shortest path distances equals lgW , the maxi-
mum number of bits to represent any weight in the range of w.

Each iteration of parallel Gabow evaluates every vertex exactly
once, which requires Θ(E) total work per phase. Since each edge
adds at most one vertex to the queue to either evaluate or ignore,
O(E) items must be examined per iteration of Gabow. Finally,
O(E) total work is required to spawn and sync all parallel compu-
tation in an iteration of parallel Gabow. The total work of parallel
Gabow is therefore O(E lgW).

Second, we will prove a worst-case bound on the span of parallel
Gabow.

LEMMA 2. Let G = (V,E) be a connected, directed graph; let

w : E → Z+ be a weight function on E; let W be the maximum

weight in the range of w; let ∆ be the maximum degree of any ver-

tex v ∈ V ; and let D be the length of the longest minimum-weight

path in any iteration of Gabow’s algorithm. The worst-case span

of parallel Gabow is O(V lg∆ lgE/D lgW).

PROOF. The iterations of parallel Gabow must be executed se-
rially, contributing Θ(lgW) to the span of the algorithm. Within a
single iteration of parallel Gabow, the D bins in the priority queue
are examined serially. For each distance d < D, the bin represent-
ing distance d may be evaluated kd times, where kd is the length
of the longest zero-weight edge chain at distance d. At each of

these

D∑

d=0

kd serial steps, the contents in each bin is evaluated with

a logarithmic span to divide the computation and a O(lg∆) span to
evaluate the adjacency list of each evaluated vertex in parallel.

Since each vertex is evaluated at most once, each vertex may
appear at most once in any bin’s zero-weight edge chain. Conse-

quently, the number of serial steps

D∑

d=0

kd ≤ V , and the worst-case

span of parallel Gabow is O(V lgE/D lg∆ lgW).

Lemmas 1 and 2 implies a lower bound for the parallelism of
Ω(E/(V lg∆ lgE/D)). If we assume a random graph, we can prove
larger parallelism lower bound with high probability.

LEMMA 3. Let G = (V,E) be a random connected, directed

graph; let w : E → Z+ be a random weight function on E; let

W be the maximum weight in the range of w; let ∆ be the maximum

degree of any vertex v ∈ V ; and let D be the length of the longest

minimum-weight path in any iteration of Gabow’s algorithm. The

span of parallel Gabow is O(D lgV/D lgE/D lg∆ lgW).

PROOF. The iterations of parallel Gabow must be executed se-
rially, contributing Θ(lgW) to the span of the algorithm. Within a
single iteration of parallel Gabow, the D bins in the priority queue
are examined serially. For each distance d < D, the bin represent-
ing distance d may be evaluated kd times, where kd is the length
of the longest zero-weight edge chain at distance d. At each of

these

D∑

d=0

kd serial steps, the contents in each bin is evaluated with

a logarithmic span to divide the computation and a O(lg∆) span to
evaluate the adjacency list of each evaluated vertex in parallel.

With high probability, the longest zero-weight chain within any
particular bin distance d is logarithmic in the number of vertices
evaluated at distance d. Consequently, the maximum value of

Graph type Min Median Mean Max

Random 25 36 50 226
Road Network 1109 2551 2684 4973

Figure 3: Minimum, median, mean, and maximum queue sizes during par-
allel Gabow’s execution on a random graph and on a road network. The
random graph used contains 1.5 million vertices and 4 million edges. The
road network graph used is models the road network for the northeastern
part of the U.S.

456789

1
0

1
1

1
2

1
3

Bit

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

01234

V
e
r
t
ic
e
s

Figure 4: Total number of vertices in all longest zero-weight chains for
each iteration of parallel Gabow on a random graph.

D∑

d=0

kd = O(D lgV/D), and with high probability the span of paral-

lel Gabow on a random graph is O(D lgV/D lgE/D lg∆ lgW).

Lemmas 1 and 3 imply a lower parallelism bound of
Ω(E/(D lgV/D lgE/D lgDelta).

6. STATISTICS FOR PARALLEL GABOW
To verify the feasibility of parallelizing Gabow’s shortest paths

algorithm, we measured several statistics concerning the serial exe-
cution of parallel Gabow on random graphs and on road networks.
First, we measured the necessary queue size for each iteration of
Gabow. Second, we measured the total length of all zero-weight
chains on each iteration. Finally, we measured the number of ver-
tices within each bin that were evaluated and that were evicted.

Random graphs

We collected statistics from running parallel Gabow serially on a
random graph with 1.5 million vertices and 4 million edges.

456789

1
0

1
1

1
2

1
3

Bit

M
e
d
ia
n

M
e
a
n

M
a
x

0
5
0
0
0
0

1
0
0
0
0
0

1
5
0
0
0
0

2
0
0
0
0
0

2
5
0
0
0
0

3
0
0
0
0
0

3
5
0
0
0
0

01234

V
e
r
t
ic
e
s

Figure 5: Max, mean, and median of the number of vertices evaluated in
each bin during each iteration of parallel Gabow on a random graph.

First we examined the number of bins needed in the queue, and
found the results presented in Figure 3. We found that over all it-
erations of Gabow’s algorithm on this graph, the number of bins
needed in the priority queue for this graph is only 50 on average,
and never more than 250. This suggests that a large number of ver-
tices may end up within each bin, all of which could be processed
in parallel.

We also measured the total length of all zero-weight chains in
each iteration of parallel Gabow on a random graph in order to
bound the span of the parallel Gabow’s execution. As shown in
Figure 4, the total length of zero-weight chains for this is usually
around 275 vertices and never above 450 vertices. This further sup-
ports the intuition that each step of parallel Gabow may process a
large number of vertices in parallel.

We then measured the number of vertices evaluated within each
bin for each iteration of Gabow, and we found the results presented
in Figure 5 for a random graph. The average number of vertices
evaluated within a bin is consistently around 10000, while the me-
dian number of evaluated vertices is even smaller. The maximum
number of vertices evaluated in any bin is initially large — over
250000 — and drops to around 125000 for later iterations of the
algorithm, suggesting that the distribution of shortest path weights
becomes more even in later iterations. All together these results
suggest that a small number of bins processed on each iteration
contain most of the vertices to evaluate, all of which may be pro-
cessed in parallel.

Finally we examined the number of vertices within any bin that
were evicted for each iteration. These vertices represent additional
work within the queue that parallel Gabow must deal with due
to the queue’s lack of a parallel DECREASE-KEY operation. As

456789

1
0

1
1

1
2

1
3

Bit

M
e
a
n

M
a
x

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

8
0
0
0
0

1
0
0
0
0
0

1
2
0
0
0
0

1
4
0
0
0
0

1
6
0
0
0
0

1
8
0
0
0
0

2
0
0
0
0
0

01234

V
e
r
t
ic
e
s

Figure 6: Max and mean of the number of vertices ignored in each bin
during each iteration of parallel Gabow on a random graph.

shown in Figure 6, for random graphs the maximum number of
evicted vertices is large in early iterations of Gabow’s algorithm,
but tapers off in subsequent iterations. Compared to the number of
vertices evaluated, however, the ignored vertices total at most 37%,
of V , and are typically less than 10%. We therefore do not expect
these vertices to hurt the performance of parallel Gabow too much
for random graphs.

Road networks

We collected the same set of statistics for parallel Gabow on a road
network of the northeastern U.S., which also contained approxi-
mately 1.5 million vertices and 4 million edges. The statistics fol-
low a similar trend to those for random graphs, but their values are
scaled compared to random graphs, demonstrating that road net-
work exhibit less parallelsim for Gabow to exploit. As shown in
Figure 3, the queue sizes needed for a road network graph are typ-
ically around 2500: 10 times larger than for a comparably sized
random graph, but small compared to V nonetheless. The total
length of zero-weight chains for this road network is also larger
— typically around 10% of V . As expected from the larger queue
size, the number of vertices evaluated within a bin on each iter-
ation is smaller compared to Gabow’s performance on a random
graph, suggesting that less parallelism is available for Gabow on
this graph. Finally, the number of ignored vertices in the queue is
never more than 16% of V at max, and on average is much smaller.

7. PERFORMANCE RESULTS FOR

PARALLEL GABOW
We implemented the parallel Gabow algorithm in Cilk++ and

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

parallelism
burdened speedup

Parallel Gabow
Dijkstra

Figure 7: Example speedup for parallel Gabow on a random graph. All
speedups are normalized to parallel Gabow’s serial performance.

compared its performance to a simple serial Dijkstra implementa-
tion in C++. This section compares their performance on random
graphs and graphs of parts of the U.S. road network.

Our serial Dijkstra implementation used a priority queue pro-
vided by the C++ Standard Template Library [1]. This priority
queue did not support a DECREASE-KEY operation. Consequently,
our implementation of Dijkstra only performs INSERTs and ignores
previously evaluated vertices when they appear more than once
from EXTRACT-MIN.

We ran our tests on an Intel Core i7 quad-core machine with a to-
tal of eight 2.53-GHz processing cores (hyperthreading disabled),
12 GB of DRAM, two 8-MB L3-caches each shared between 4
cores, and private L2- and L1-caches with 256 KB and 32 KB, re-
spectively.

Random graphs

Figure 8 shows the performance results form running Dijkstra and
parallel Gabow on four different random graphs. These random
graphs were generated using the random graph generator in the
shortest paths library by Cherkassky et al. [3].

As can be see in Figure 8, parallel Gabow executed serially takes
over 4 times longer to run than Dijkstra. On eight cores, however,
parallel Gabow attains a speedup of approximately 5, and manages
to run faster than Dijkstra. With a measured parallelism of 20 for
these random graphs, parallel Gabow’s performance may scale on
several more processors.

Figure 7 shows an example speedup characteristic for parallel
Gabow on a random graph, along with the burdened speedup esti-
mate according to Cilkview. The graph used for this example is a
random graph of 1.5 million vertices and 4 million edges generated
by the same random graph generator in the shortest paths library by
Cherkassky et al.

In Figure 7 the speedup characteristic for parallel Gabow closely
fits the burdened estimate from Cilkview, which suggests that the
burdening involved in spawning computations in parallel Gabow

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
pe

ed
up

Processors

parallelism
burdened speedup

Parallel Gabow
Dijkstra

Figure 9: Characteristic performance on a U.S. road network. Speedup
values are normalized to parallel Gabow’s serial performance.

has a large effect on its real-world performance.

U.S. road networks

Figure 10 shows the performance results form running Dijkstra and
parallel Gabow on four different U.S. road networks. These road
network graphs were obtained from the proceedings of the 9th DI-
MACS Implementation Challenge on Shortest Paths [2].

From Figure 10 parallel Gabow executed serially is 6× to 8×
slower than Dijkstra on road networks. Unlike random graphs,
however, parallel Gabow attains a speedup of only 1.6 to 2.4 on
road networks. Consequently, this suggests that Dijkstra outper-
forms parallel Gabow on road network graphs for any number of
processors.

Figure 9 shows an example speedup characteristic for parallel
Gabow on a U.S. road network, along with the burdened speedup
estimate according to Cilkview. The graph used for this example is
the road network for the northeastern portion of the U.S.

As with random graphs, parallel Gabow’s performance on road
networks closely follows the burdened speedup curve, suggesting
that the burden of spawning parallel computation in parallel Gabow
has a substantial effect on its real-world performance. Further-
more, parallel Gabow’s performance often falls slightly below the
burdened speedup estimate, suggesting that system-related factors,
such as the memory bandwidth or sharing, may be restricting par-
allel Gabow’s performance.

8. FUTURE WORK

Variable radix sizes

First, because in practice the queue size on each iteration of Gabow
is reasonably small relative to V , it may be feasible for a single
iteration of Gabow to examine multiple bits of each weight at a
time, speeding up Gabow’s performance in practice.

Dijkstra Parallel Gabow Parallel Gabow Parallel Gabow
|V | |E| Parallelism T1 T1 T8 T1/T8

0.45M 1M 21.04 1.55 6.75 1.43 4.73
1M 2.7M 21.15 4.11 17.91 3.36 5.34

1.2M 2.8M 20.99 4.68 19.91 3.79 5.26
1.5M 4M 22.76 6.37 26.87 5.00 5.38

Figure 8: Performance results of parallel Gabow and a standard Dijkstra implementation on random graphs. All runtimes are measured in seconds.

Dijkstra Parallel Gabow Parallel Gabow Parallel Gabow
Graph |V | |E| Parallelism T1 T1 T8 T1/T8

COL 0.44M 1.1M 10.99 1.02 7.81 4.82 1.62
FLA 1.1M 2.7M 11.30 2.52 19.73 11.52 1.71
NW 1.2M 2.8M 11.80 2.83 20.09 11.36 1.77
NE 1.5M 3.9M 14.73 3.89 24.90 10.44 2.38

Figure 10: Performance results of parallel Gabow and a standard Dijkstra implementation on US road networks. All runtimes are measured in seconds. The
graph COL is the road network for Colorado, and FLA is the road network for Florida. The graphs NW and NE are the road networks for the northwestern
and northeastern parts of the U.S. respectively.

Discarding edges

It is possible that, during an iteration of Gabow, if some edge is
found to have a potential difference across it that is too large for it
to be used in a shortest path, parallel Gabow can remove that edge
from the graph. We suspect that these optimizations may improve
the empirical performance of Gabow substantially, and we plan to
investigate if these optimizations make the serial performance of
Gabow’s algorithm comparable to that of Dijkstra.

9. CONCLUSION
We designed and implemented a parallel algorithm for solving

the single-source shortest paths (SSSP) problem for graphs with
nonnegative edge weights, based on Gabow’s scaling algorithm for
SSSP. We were able to expose parallelism on all but the least ad-
vantageous graphs.

Our parallel Gabow algorithm performs well in practice on ran-
dom graphs, outperforming a simple Dijkstra implementation on
six or more cores.

There are two additional optimizations to parallel Gabow we
would like to try in future research. First, because in practice the

queue size on each iteration of Gabow is reasonably small relative
to V , it may be feasible for a single iteration of Gabow to examine
multiple bits of each weight at a time, speeding up Gabow’s perfor-
mance in practice. Second, during an iteration of Gabow, if some
edge is found to have a potential difference across it that is too large
for it to be used in a shortest path, parallel Gabow can remove that
edge from the graph. We suspect that these optimizations may im-
prove the empirical performance of Gabow substantially, and we
plan to investigate if these optimizations make the serial perfor-
mance of Gabow’s algorithm comparable to that of Dijkstra.

10. REFERENCES
[1] Standard Template Library Programmer’s Guide, 1994. Available

from http://www.sgi.com/tech/stl/.

[2] AMS. 9th DIMACS Implementation Challenge — Shortest Paths,
Providence, RI, 2006.

[3] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest paths algorithms: Theory and experimental evaluation. Math.

Program., 73:129–174, 1996.

[4] Harold N. Gabow. Scaling algorithms for network problems. J.

Comput. Syst. Sci., 31(2):148–168, 1985.

