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ABSTRACT

This paper evaluates the performance of four parallel LUP
decomposition implementations. The implementations
vary widely: two are implemented in Cilk++, but use
different underlying algorithms to perform LUP decom-
position; one written in Fortran; and the other is written
in C++ with pthreads. This diversity allows us to evaluate
which implementation techniques and properties are im-
portant to achieve high performance on modern multicore
systems. The result of our evaluation indicates the perfor-
mance of parallelized LUP decomposition is dependent
on efficient use of on-chip and off-chip memory resources.
Furthermore, dynamic scheduling is an important factor
in achieving good performance in multiprogrammed envi-
ronments.

1 INTRODUCTION

Multicore systems offer abundant compute cycles along
with slow off-chip DRAM access. To avoid the cost of
reading from DRAM, hardware architects provide fast
on-chip caches. A key challenge is designing an algo-
rithm so that its implementation reads from and writes to
local on-chip caches. This challenge is especially diffi-
cult when the algorithm’s implementation operates on an
amount of data that exceeds the size of on-chip caches.
One such application is LU decomposition with paritial
pivoting (or simply LUP decomposition), which is an
application commonly used in numerical analysis. This
paper reports on our experience optimizing and evaluating
the performance of four multicore LUP decomposition
applications.

LUP decomposition decomposes a matrix into the prod-
uct of a Lower triangular matrix and Upper triangular
matrix, and produces a Permutation matrix. One way to
achieve good performance with a large input matrix is to
divide the input matrix into small blocks that fit in on-chip
caches, then operate on each block in turn. This provides
good performance because each operation on a block typ-
ically reads the block multiple times, but the penalty for
reading the block from DRAM is only incurred once.

In principle the blocking approach sounds simple. The
memory systems of modern multicore systems, however,
have numerous complexities that must be considered to
achieve good performance. For example, caches hold
memory at the granularity of cache lines, which are typi-

cally at least 64 bytes. If a LUP application fails to parti-
tion a matrix along cache line boundaries the result might
be that multiple cores write to the same cache line, caus-
ing the cache line to “bounce” between on-chip caches.
Writing to a cache line in a local cache can be as much as
100× faster than writing to a cache line that has bounced
into another cache.

Multiprogrammed environments create additional com-
plexities for LUP decomposition applications. In an multi-
programmed environment, a LUP application must share
the CPU cycles and caches with other applications. A
common result for LUP applications that assume exclu-
sive access to CPU resources is poor performance caused
by cache misses or load imbalance.

The main contribution of this paper is a performance
evaluation of four LUP decomposition implementations,
two written in Cilk++, one written in C++, and the
PLASMA library [4], which is an “industrial grade” LUP
application written in Fortran. Our results demonstrate
the following: (1) the performance of our fastest Cilk++
application is competitive with PLASMA on a number of
architectures; (2) careful matrix layout that accounts for
hardware complexities is important for achieving good
performance; (3) PLASMA uses more memory than our
Cilk++ and C++ applications; (4) the relatively poor per-
formance of one Cilk++ application and the C++ applica-
tion is, at least in part, due to poor utilization of on-chip
caches; and (5) compared to PLASMA and the C++ appli-
cation, the performance of Cilk++ applications degrade
gradually in a multiprogrammed environment as more
processes compete for CPU resources.

The rest of this paper is organized as follows. Sec-
tion 2 details the design of the two LUP decomposition
algorithms used in the LUP implementation we evaluate.
Section 3 describes the four LUP implementations. Sec-
tion 4 analyzes experimental results from benchmarking
all four implementations. Section 5 discusses future work
and Section 6 concludes.

2 ALGORITHM DESIGN

We evaluate the performance of LUP decomposition ap-
plications, each of which is based on one of two algo-
rithms: the right-looking algorithm and the recursively-
partitioned algorithm. The input to both algorithms is
a n × m matrix A, where n ≥ m, and the result is a
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lower triangular matrix L, an upper triangular matrix U ,
and a permutation matrix P , such that PA = LU . This
section provides a brief overview of both algorithms1 and
describes how we parallelize both algorithms.

2.1 Right-looking
The right-looking algorithm is used for LUP decomposi-
tion in popular linear algebra libraries, such as PLASMA
and LAPACK [3]. The algorithm works iteratively, de-
composing r columns and r rows of A at every iteration.
At the start of the kth iteration

PA =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where A22 is an r order square matrix, A32 is a
(n− kr)× r matrix, and A23 is a r × (m− kr) matrix.
The right-looking algorithm has decomposed the first
(k − 1)r rows and (k − 1)r columns of A. The kth itera-
tion performs the following steps:

1. Decompose

P2

[
A22

A32

]
=
[

L22

L32

]
U22

If r = 1, perform pivoting and scaling, otherwise
decompose using the right-looking algorithm with
r = 1.

2. Permute

P2

[
A23

A32

]
→
[

A23

A32

]
.

3. Permute

P2

[
L21

L31

]
→
[

L21

L31

]
.

4. Solve the triangular system for U23

[
L22

L32

]
U23 = A23.

5. Update A33 − L32U23 → A33.

6. Repeat Step 1 until kr = m.

1We derived these descriptions from [6].

2.2 Recursively-partitioned
The recursively-partitioned algorithm was originally de-
scribed by Toledo in [6]. Toledo demonstrated that the
recursively-partitioned algorithm generates asymptoti-
cally less memory traffic than the right-looking algorithm,
even when the block size r of the right-looking algorithm
is tuned to an optimal value. The algorithm works recur-
sively, processing the block matrix

PA =
[

A11 A12

A21 A22

]
where A11 is an order m/2 square matrix. The algorithm
performs the following steps:

1. If m = b, where b is a base case, factor

P1

[
A11

A21

]
=
[

L11

L21

]
U11

using the right-looking algorithm with r = 1 and
return.

2. Else, recursively factor

P1

[
A11

A21

]
=
[

L11

L21

]
U11.

3. Permute

P1

[
A12

A22

]
→
[

A12

A22

]
.

4. Solve the triangular system for U12

A12 =
[

L11

L21

]
U12.

5. Update A22 − L21U12 → A22.

6. Recursively factor P2A22 = L22U22.

7. Permute P2L21 → L21.

2.3 Parallelizing
We parallelize the right-looking and recursively-
partitioned algorithms using parallel algorithms to per-
form matrix multiplication, forward substitution to solve
triangular systems, pivoting, and scaling. There are op-
portunities to achieve more parallelism, for example by
performing Step 1 in parallel with Step 5 of the right-
looking algorithm after Step 5 updates the first r rows
and r columns of A33. However, our empirical results
indicate that it is more important to optimize Step 5 of
both right-looking and recursively-partitioned, because it
has the most parallelism.
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3 IMPLEMENTATION

This paper reports on four implementations of LUP de-
composition. We wrote one version of the right-looking
algorithm in Cilk++ (referred to as Cilk++ right), wrote
another version of the right-looking algorithm in C++ us-
ing pthreads (referred to as pthreaded right), ported Kusz-
maul’s implementation of the recursively-partitioned algo-
rithm [5] from Cilk-5 to Cilk++ (referred to as Cilk++ re-
cursive), and use PLASMA’s LUP decomposition, which
is written in Fortran, without any modifications.

All four implementations operate on A in place, re-
placing the lower triangular of A with L and the upper
triangular of A with U , and return an array permutations
that, when applied to an identity matrix, produce a permu-
tation matrix P . All matrices use a row major layout with
an optimization described in Section 4.2. We use 64×64
as our base case value in Cilk++ right, Cilk++ recursive,
and pthreaded right. All four implementations use the
Goto BLAS [2] linear algebra library for performing ma-
trix multiplication. Table 1 gives the breakdown of the
number of lines of code for each implementation.

The parallelized Cilk++ matrix multiplication, pivot-
ing, and scaling functions are all written as divide-and-
conquer algorithms. Forward substitution is written using
cilk for. We found that the matrix multiplication al-
gorithm presented in [1] performed poorly because most
the of matrix multiplication computations involve non-
square matrices. The result of using the algorithm in [1]
was that the base case essentially multiplied a row vector
and a column vector. For large matrices A, reading the
column vector resulted in poor cache performance and
low parallelism. We use an alternative matrix multiplica-
tion algorithm provided by Kuszmaul, which recursively
divides matrices along the longest dimension until the
algorithm reaches a base case. With this algorithm, the
base case multiplies matrices that have closer to square
dimensions.

The pthreaded implementation of right-looking works
by creating P worker threads, partitioning the matrix A
into blocks, and statically assigning each worker thread
to distinct set of blocks. Every thread updates only the
blocks of A they are assigned to. For example, when
executing Step 5 of the right-looking algorithm, threads
update only the blocks of A33 that the schedule assigns
to them.

A “master” thread is responsible for controlling the ex-
ecution of LUP decomposition. The master thread signals
the other threads to perform the matrix operations by writ-
ing to a shared memory location, which the other threads
poll. For example, to execute Step 5 of the right-looking
algorithm, the master thread signals the other threads to
update A33 by subtracting L32U23. Threads will execute
only the multiplications necessary to update the blocks of

Implementation LUP Matrix
Cilk++ right 121 257
Cilk++ recursive 111 238
Pthreaded right 134 934
PLASMA 143 269

Table 1: A breakdown of the number of lines of code for
the four implementations of LUP decomposition. The
“LUP” column refers to the number of lines of code to
implement the algorithms described in Section 2. The
“Matrix” column refers to the number of lines of code to
implement parallel matrix operations.

the matrix they are assigned to. The result of this design
is that the implementation of right-looking algorithm is
almost identical to the Cilk++ implementation, except
with different calls to matrix functions.

4 EVALUATION

We evaluated the four implementations of LUP to explore
what factors had the greatest impact on performance. We
ran all experiments on matrices composed of 8-byte dou-
ble precision floating point values. To see the impact
of different machine architectures, we benchmarked on
three 64-bit machine architectures. These revealed sig-
nificant performance heterogeneity even using the same
ISA. Cache behavior was found to be a dominant factor
in performance for certain matrix sizes, and a simple fix
improved performance considerably. Because of this, we
believe memory performance to be the dominant factor in
LUP performance on multicore architectures.

With good cache behavior, Cilk++ implementations
were competitive with PLASMA. Both right-looking im-
plementations suffered performance problems on all but
one architecture, which we believe to be related to mem-
ory performance. The one architecture that performs well
is the newest, and has a significantly improved memory
architecture.

4.1 Architectural Heterogeneity

Name Configuration
AMD16 Quad-quad AMD Opteron 8350 at 2.0

GHz, 64 GB RAM.
Intel16 Quad-quad Intel Xeon E7340 at 2.0

GHz, 16 GB RAM.
Intel8 Dual-quad Intel Xeon E5530 at 2.4 GHz,

12 GB RAM.

Table 2: Machine configurations used in benchmarks.

Table 2 shows the machine configurations used in these
studies. A Xen suffix indicates the machine was running
a Xen-modified Linux kernel. This was found to exhibit
strange behavior in some cases, so may impact perfor-
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Figure 1: Performance and scaling of implementations on each machine configuration for a 8192×8192 matrix.
Gigaflops achieved by each implementation is plotted against the number of cores used.

Implementation LUP performance (Gflops)
AMD16 Intel16 Intel16Xen Intel8Xen

Cilk++ recursive 17.2 19.6 17.4 32.5
Cilk++ right 7.72 8.53 7.38 23.2
Pthreaded right 12.5 11.2 10.8 22.1
PLASMA 28.7 21.5 20.6 31.1

Table 3: Summary of performance on 4096×4096 matrices running on 8 cores.

mance in other ways. All tests were run in dom0 (not
inside a virtual machine).

Table 3 summarizes the performance of each imple-
mentation on each machine configuration. These results
are for a 4096×4096 matrix, which is smaller than the ma-
trices used to gather other results in this section. LUP was
ran on 8 cores for each configuration so that comparisons
could be drawn with Intel8Xen.

Figure 1 shows the performance and scaling of the
implementations on each machine configuration. These
results are for a 8192×8192 matrix. Figure 1 and Table 3
show significant performance differences for each con-
figuration. PLASMA performs the best on AMD16, but
Cilk++ recursive is competitive on all other configurations.
Intel16 and Intel16Xen perform similarly at 8 cores, with
small degradation on the Xen configuration. On AMD16
and both Intel16 configurations, the right-looking imple-
mentations perform poorly. On Intel8Xen, however, they
perform much better (although still significantly worse
than Cilk++ recursive and PLASMA).

Finally, Figure 2 shows the odd scaling problems with
Xen kernels alluded to earlier. PLASMA performance
flat-lines going from 10 to 11 cores on Intel16. We are not
sure what causes this, but it raises the possibility of other
performance interference from Xen kernels. The only hint
we have is that PLASMA uses more memory than our
implementations. Table 4 shows the maximum amount
of memory each implementation uses to decompose a
8192×8192 matrix. We measured memory usage using
statistics provided by Linux. We suspect that PLASMA’s
poor performance is caused when PLASMA uses more
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Figure 2: Performance impact from Xen kernels on In-
tel16.

DRAM than the Xen kernel has allocated, and Xen begins
paging memory to disk.

Implementation Maximum memory usage
Cilk++ recursive 1415 Mbytes
Cilk++ right 855 Mbytes
Pthreaded right 816 Mbytes
PLASMA 2158 Mbytes

Table 4: The maximum memory each LUP implementa-
tion uses to decompose a 8192×8192 matrix. The amount
of memory required to hold a 8192×8192 matrix of dou-
ble precision floats is 512 Mbytes.

We believe memory performance is the major limiting
factor on performance for the right-looking implemen-
tations. Figure 3 shows performance of Cilk++ recur-
sive compared to the right-looking implementations on
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Figure 3: Execution time and memory latency of right-looking implementations relative to Cilk++ recursive. Each
value is calculated by dividing the total for the right-looking implementation by the total for Cilk++ recursive. Value of
1 indicates equal values.

AMD16. This figure plots the relative load latency and
execution time for different matrix sizes. Memory latency
is counted using hardware performance counters as the to-
tal number of pipeline stalls waiting for memory divided
by the number of loads. Notice how for large matrices,
memory latency increases and execution time correspond-
ingly increases. There are some constant overheads for
small matrices that make this untrue in Figure 3b, but we
believe this would correct itself for larger matrices. This
figure does not prove a direct connection, but given other
observations we believe it shows memory and caching to
be the critical performance issue.

4.2 Cache Effects

We discovered while gathering results that performance
for matrices whose row size was a power of 2 suffered
significant performance degradation. This was due to
conflict misses in the processor cache – elements of a
single row would map to the same cache set, causing
cache misses every time a worker accessed an element.
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Figure 4: Performance of Cilk++ recursive compared
to PLASMA with different padding sizes. Plot “i-pad”
indicates that i padding elements were added to each row
of the matrix.

We implemented a simple fix by padding the matrix
with a single cache line per row, as needed. Figure 4
shows the results of this optimization. With no padding
(“Cilk++ no-pad”), performance of Cilk++ recursive is
significantly worse than PLASMA. With padding, per-
formance of the two are indistinguishable, with Cilk++
recursive showing slightly better and less variable perfor-
mance. Slight performance differences are observed for
changing the padding value, but this is a second-order
effect.

4.3 Parallelism
Table 5 shows parallelism values as reported by cilkview
for both Cilk++ implementations. As the matrix size
increases, so do the parallelism metrics for each imple-
mentation. Note, however, that for larger matrices Cilk++
recursive achieves much higher parallelism. Additionally,
the burdened parallelism of Cilk++ recursive is much
closer to its unburdened parallelism than Cilk++ right.
This indicates that we should not expect the right-looking
implementation to scale up to a large number of cores.
However, we do not believe parallelism is the fundamen-
tal issue limiting the performance of right looking algo-
rithms. With parallelism of 57.3 for 8192×8192 matri-
ces, we would expect to see scaling up to at least four
cores. However, even with low core count Cilk++ re-
cursive scales much better, particularly on AMD16 and
Intel16. This, along with the improved performance on
Intel8Xen, makes us believe that memory architecture is
a more important issue.

4.4 Scheduling
One of the major features of Cilk++ is its distributed, dy-
namic scheduler. Numeric algorithms such as LUP have
well understood computation patterns, and static schedul-
ing works well. Therefore, one would not expect LUP
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Matrix Size Cilk++ recursive Cilk++ right
Parallelism Burdened Parallelism Parallelism Burdened Parallelism

2048 × 2048 15.8 15.5 16.0 12.2
4096 × 4096 38.1 37.4 34.6 26.0
8192 × 8192 92.6 91.1 72.8 57.3

Table 5: Parallelism numbers given by cilkview for different matrix sizes.

decomposition to benefit much from Cilk++’s dynamic
scheduler. In fact, one could expect performance degrada-
tion, as the dynamic scheduler moves computation away
from the core that has cached the data.

There are, however, many plausible environments that
reintroduce the need for dynamic scheduling. For exam-
ple, a chip could have non-uniform frequency scaling due
to temperature problems. Another example is when the
system is running multiple programs that are contending
on the CPU. This study explores the impact of a mul-
tiprogrammed environment on the performance of each
algorithm.

Our methodology is to run multiple copies of each
algorithm simultaneously, and see what impact this has on
their performance. The “background job” is configured
to take up different numbers of cores on the machine,
going from no cores to the full chip. One interesting
direction of future work would be to extend this with
targeted workloads running as the background jobs to see
which system factors are limiting performance.

æ

æ
æ

æ
æ æ

æ æ æ

à

à
à

à

à
à à à à

ì

ì

ì

ì

ì
ì ì

ì ì

ò

ò

ò

ò
ò

0 2 4 6 8
Cores

10

20

30

40

Gflops
Multiprogrammed environment

ò Pthreaded right

ì PLASMA

à Cilk++ recursive

æ Cilk++ right

Figure 5: Performance of each implementation in a multi-
programmed environment. Performance is plotted on the
y-axis in Gigaflops, while the x-axis plots the number of
cores consumed by a background job.

Figure 5 shows the results on Intel8Xen. The Cilk++
implementations show modest, gradual performance
degradation as more cores are consumed in the system.
The degradation for PLASMA and pthreaded right are
more severe. Pthreaded right shows extreme performance
degradation – in fact, no points are plotted after 4 cores
because tests would not finish in reasonable amounts of
time. The degradation of PLASMA is much less pro-
nounced, but is nevertheless a greater percentage of its
original run-time. The performance of PLASMA and the

Cilk++ implementations is roughly equivalent as more
cores are contended.

Curiously, we observed greater performance degrada-
tion for PLASMA with smaller matrices (4096× 4096),
with Cilk++ implementations non-trivially outperforming
PLASMA. This, along with its modest performance degra-
dation in Figure 5, leads us to speculate that PLASMA
may perform some coarse-grain dynamic scheduling it-
self. However, we do not understand the PLASMA code
base sufficiently to definitely say whether or not this is
the case.

5 FUTURE WORK

Our evaluation indicates Cilk++ is a suitable language for
writing high performance LUP decomposition applica-
tions. A possible direction for future work is implement-
ing and evaluating Cilk++ applications similar to LUP
decomposition, such as QR factorization.

Another interesting direction for future work is devel-
oping and evaluating matrix layouts for LUP decompo-
sition. For example, a blocked matrix, where each block
is contiguous array in memory, might provide better per-
formance than a row major matrix with padding. The
reason for this is that some hardware prefetchers, such as
the unit-stride prefetch unit in AMD Opterons, are opti-
mized for contiguous arrays. Using a matrix layout that is
conducive to hardware prefetching would likely improve
the memory bandwidth that the LUP application achieves.
Our evaluation indicates that the performance of LUP
applications is, at least in part, bottlenecked by memory
bandwidth, so this could be an important optimization.

6 CONCLUSION

This paper presents the evaluation of four LUP decom-
position implementations. We demonstrate that matrix
layout is an important factor for achieving good perfor-
mance, and that dynamic scheduling is necessary in a
multiprogrammed environment. Furthermore, LUP de-
composition written in Cilk++ competes with PLASMA,
consumes less memory, and provides better performance
in a multiprogrammed environment. These results sug-
gest that Cilk++ is an appropriate language for writing
high performance LUP decomposition applications and
similar applications, such as QR decomposition.
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