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Subgraph Isomorphism

• Given graphs G, H
• Determine if H is isomorphic to a subgraph of G
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Outline

• Parallelized Subgraph Isomorphism Library
• Many failed methods
• Near-linear Speedup on Random Graphs
• Reasonable Parallelism on Hard Parasitic Graphs
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VFLib

• General Fast Subgraph Isomorphism Library
• Memory efficient implementation of Ullman Algorithm

• in-set, out-set

• Serial implementation only
• Works with large database of graphs
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VFLib’s Algorithm

• Ullman Heuristics
• Optimized Data Structures

• Matched Set for current match
• in-set Array
• out-set Array
• Indexed by node-id
• Stores step number (basically a log)
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Parallel Algorithm

• Add cilk_spawn calls for each graph child
• Deep copy of data structure whenever we spawn
• Massive memory overhead: solve by “coarsening”
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Random Graph Results
• Good parallelism on random graphs
• Low burden: 312.66 / 314.71
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Trouble in Parallel Paradise

• Coarsening solves our memory issue
• Not hard to imagine parasitic graphs
• 2D Meshes - Speedup: 1.001



Problem VFLib Simple Solution Solutions Analysis

Initial Strategies

• 2 Basic Approaches
• Spawn more

• Faster Deep Copying
• Spawn better

• Develop heuristics for where and when to cilk_spawn
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Data Structure Solutions

• Cost values are in Seconds
• Scaled by times called per deep copy – next pair is x20

and backtrack is x0.6

Deep Copy Get-Next-Pair BackTrack
Arrays 6.7 · 10−6 1.2 · 10−5 1.1 · 10−6

Mapsets 8.8 · 10−6 1.2 · 10−4 1.8 · 10−5

Bitsets 5.1 · 10−6 3.2 · 10−5 3.0 · 10−6
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Spawn Heuristic Solutions

• Non-linear cutoff
• Mid-tree respawn
• Spawn first child
• Really just want to spawn when there’s more work
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Conditional Copy
• Deep copy only when a steal occurs – requires a Snapshot

bool running = false
cleanCopy = state->deepClone()
for (p in state->nextPair())

needs_clean = ! running
if (running)

nextState = cleanCopy->deepClone()
nextState -> addPair()

else
running = true
nextState = state
nextState -> addPair()

cilk_spawn match(nextState, &running, needs_clean)
....

if (needs_clean)
nextState -> backTrack()

* parentRunFlag = false
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Parallelism

• Increased burden, but fixed most parasitic cases
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Random Graphs Speedup
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2D Meshes Speedup
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Parallel Programming Difficulty

• Main issue: spawn cost >> scheduling overhead
• Better spawn heuristics with active_workers()
• Our conditional copy is on the bleeding edge of working

and not working
• Possible language feature
• Data Structure Wrapper - splitter
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Future Work

• Optimizing for non-steal case. Mix log and snapshots.
• Design and implement a splitter hyperobject
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Contributions

• Compared performance of several data structures for
subgraph isomorphism

• Implemented a faster than current state-of-the-art
subgraph isomorphism match algorithm.

• Detailed a general approach to dealing with large data
structure copying for spawns in cilk platform

• Speculated on useful language features to enable
conditional copying in cilk


	Problem
	VFLib
	Simple Solution
	Solutions
	Analysis

