
Problem VFLib Simple Solution Solutions Analysis

Subgraph Isomorphism

Aaron Blankstein, Matthew Goldstein

MIT 6.884

May 6, 2010

Problem VFLib Simple Solution Solutions Analysis

Subgraph Isomorphism

• Given graphs G, H
• Determine if H is isomorphic to a subgraph of G

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Problem VFLib Simple Solution Solutions Analysis

Outline

• Parallelized Subgraph Isomorphism Library
• Many failed methods
• Near-linear Speedup on Random Graphs
• Reasonable Parallelism on Hard Parasitic Graphs

Problem VFLib Simple Solution Solutions Analysis

VFLib

• General Fast Subgraph Isomorphism Library
• Memory efficient implementation of Ullman Algorithm

• in-set, out-set

• Serial implementation only
• Works with large database of graphs

Problem VFLib Simple Solution Solutions Analysis

VFLib’s Algorithm

• Ullman Heuristics
• Optimized Data Structures

• Matched Set for current match
• in-set Array
• out-set Array
• Indexed by node-id
• Stores step number (basically a log)

Problem VFLib Simple Solution Solutions Analysis

Parallel Algorithm

• Add cilk_spawn calls for each graph child
• Deep copy of data structure whenever we spawn
• Massive memory overhead: solve by “coarsening”

Problem VFLib Simple Solution Solutions Analysis

Random Graph Results
• Good parallelism on random graphs
• Low burden: 312.66 / 314.71

Problem VFLib Simple Solution Solutions Analysis

Trouble in Parallel Paradise

• Coarsening solves our memory issue
• Not hard to imagine parasitic graphs
• 2D Meshes - Speedup: 1.001

Problem VFLib Simple Solution Solutions Analysis

Initial Strategies

• 2 Basic Approaches
• Spawn more

• Faster Deep Copying
• Spawn better

• Develop heuristics for where and when to cilk_spawn

Problem VFLib Simple Solution Solutions Analysis

Data Structure Solutions

• Cost values are in Seconds
• Scaled by times called per deep copy – next pair is x20

and backtrack is x0.6

Deep Copy Get-Next-Pair BackTrack
Arrays 6.7 · 10−6 1.2 · 10−5 1.1 · 10−6

Mapsets 8.8 · 10−6 1.2 · 10−4 1.8 · 10−5

Bitsets 5.1 · 10−6 3.2 · 10−5 3.0 · 10−6

Problem VFLib Simple Solution Solutions Analysis

Spawn Heuristic Solutions

• Non-linear cutoff
• Mid-tree respawn
• Spawn first child
• Really just want to spawn when there’s more work

Problem VFLib Simple Solution Solutions Analysis

Conditional Copy
• Deep copy only when a steal occurs – requires a Snapshot

bool running = false
cleanCopy = state->deepClone()
for (p in state->nextPair())

needs_clean = ! running
if (running)

nextState = cleanCopy->deepClone()
nextState -> addPair()

else
running = true
nextState = state
nextState -> addPair()

cilk_spawn match(nextState, &running, needs_clean)
....

if (needs_clean)
nextState -> backTrack()

* parentRunFlag = false

Problem VFLib Simple Solution Solutions Analysis

Parallelism

• Increased burden, but fixed most parasitic cases

Problem VFLib Simple Solution Solutions Analysis

Random Graphs Speedup

Problem VFLib Simple Solution Solutions Analysis

2D Meshes Speedup

Problem VFLib Simple Solution Solutions Analysis

Parallel Programming Difficulty

• Main issue: spawn cost >> scheduling overhead
• Better spawn heuristics with active_workers()
• Our conditional copy is on the bleeding edge of working

and not working
• Possible language feature
• Data Structure Wrapper - splitter

Problem VFLib Simple Solution Solutions Analysis

Future Work

• Optimizing for non-steal case. Mix log and snapshots.
• Design and implement a splitter hyperobject

Problem VFLib Simple Solution Solutions Analysis

Contributions

• Compared performance of several data structures for
subgraph isomorphism

• Implemented a faster than current state-of-the-art
subgraph isomorphism match algorithm.

• Detailed a general approach to dealing with large data
structure copying for spawns in cilk platform

• Speculated on useful language features to enable
conditional copying in cilk

	Problem
	VFLib
	Simple Solution
	Solutions
	Analysis

