
Parallel Subgraph Isomorphism
Aaron Blankstein

E-mail: blanks@mit.edu
Matthew Goldstein

E-mail: austein@mit.edu

Abstract—The subgraph isomorphism problem deals with
determining whether a given graph H is isomorphic to some
subgraph of another graph G. In this paper we attempt to
parallelize a fast serial subgraph isomorphism library, VFLib,
which uses backtracking search to find a solution. Our parallel
solution runs on Cilk++ for efficient execution on multicore
machines. In our work we examine the benefits and drawbacks
of several data structures when used during this backtracking
search. We also examine several heuristics for spawning threads.
Finally, we use conditional copying to achieve near-linear speedup
with the number of CPU cores on random graphs and reasonable
performance on parasitic inputs.

I. INTRODUCTION

The subgraph isomorphism problem asks the following
question. Given two graphs G,H is H isomorphic to any sub-
graph of G? Beyond just structural isomorphism, the vertices
of the graphs may have additional attributes such as labels
which add an additional requirement to the isomorphism.
These labels can be repeated throughout the target subgraph
and are often repeated many times, leading to partial subgraph
matches. This problem is provably NP-complete [1].

The fastest general algorithm for finding subgraph isomor-
phisms is a matching algorithm developed by Ullmann [2].
Ullmann’s algorithm returns a match-set, which is the set
of vertex pairs in the subgraph isomorphism. The algorithm
finds the match set by translating the problem into a search.
Potential vertex pairs are incrementally added to a match set
until either a subgraph isomorphism is discovered or no more
potential pairs exist. Because of the potential for failed paths
in the search tree, this search requires use of backtracking.

Because Ullmann’s algorithm uses backtracking search,
these partial matches can cause searching to be computa-
tionally expensive. This also leaves many opportunities for
parallelism, as any branch is the search could be handled as a
new thread of computation.

The subgraph isomorphism problem has a number of appli-
cations. In chemical engineering, it is used to find particular
chemical structures in large molecules. Subgraph isomorphism
has also been used in automated circuit layout and design
algorithms.

In this paper, we perform a simple parallelization of a
subgraph isomorphism library, VFLib, which has near-linear
speedup when working with random graphs. We then move
to 2d meshes and parasitic hard cases where the parallelism
is reduced. Several methods to improve parallelism are exam-
ined, from both data structure and thread spawning heuristic
standpoints. One method, Conditional Copying, is found to
have near-linear speedup even in the parasitic bad cases.

In the remainder of this section, we detail the VFLib library
and describe the Cilk++ language. In Section 2, we present
initial parallelization results using a naive approach and the
problems this approach created. In Section 3, we outline our
attempts at fixing some of these problems using alternative
data structures, spawning heuristics, and conditional copying.
In that section we also present the results of those attempts.
In Section 4, we speculate on future work and in Section 5,
we review our contributions.

A. VFLib

We began our work with an open source subgraph iso-
morphism library, VFLib. VFLib uses an optimized serial
version of Ullmann’s algorithm. The algorithm proceeds by
creating and modifying a match state. The match state contains
a matched-set, which is a set of vertex pairs that match
between the two graphs. If the matched-set contains all of the
query graph, H , then the algorithm is successful and returns.
Otherwise, the algorithm attempts to add a new pair. It does
this by tracking the in-set and out-set of each graph, which are
the sets of vertices immediately adjacent to the matched-set.
These two sets define the potential vertices that can be added
to a given state. The only pairs that can be added are either
in the in-set of both graphs or the out-set of both graphs. The
algorithm uses backtracking search to find either a successful
match state, or return a failure.

B. Cilk++ Language

To efficiently execute our application on multicore ma-
chines, we are using the Cilk++ language. In this language,
applications run in the Cilk++ runtime, which manages parallel
execution using computation workers. These workers run on
separate Operating System threads and there is one worker per
CPU core.

The Cilk++ language is C++ with some additional language
features. The most important feature for our work is the
cilk_spawn keyword. This keyword marks a function call
as a candidate for parallel work. When the application is
executed, the Cilk++ runtime decides whether or not the
function call is executed on a different computational worker.
This way, a developer can add many cilk_spawn calls
to their code and if the algorithm is sufficiently parallel,
the Cilk++ runtime will prevent too many OS threads from
spawning.

When dealing with parallel code, two measurements are
extremely important. The first is total work performed by
the application. The second is the amount of work performed

� �
1f u n c t i o n match (s t a t e 0) {

f o r (p i n s t a t e−>n e x t P a i r ()) {
3i f (s pa w n i ng A tT h i s Le ve l) {

n e x t S t a t e = cleanCopy−>deepClone ()
5n e x t S t a t e −> a d d P a i r ()

} e l s e {
7n e x t S t a t e = s t a t e

n e x t S t a t e −> a d d P a i r ()
9}

c i lk spawn match (n e x t S t a t e)
11}

}� �
Fig. 1: Pseudocode for the match function with cilk_spawn.

along the shortest parallel execution path. This latter measure,
the span, is the bottleneck on parallel speedup. The theoretical
maximum speedup is the total work divided by the span. For
our project, we collected measurements of work and span
using the cilkview program, which calculates the theoretical
and burdened parallelisms by counting instructions executed.

See work by Leiserson [4] for a more complete discussion
of Cilk++.

II. SIMPLE PARALLEL SOLUTION

VFLib’s subgraph isomorphism algorithm does a backtrack-
ing search, so the simplest way to parallelize the library is
to allow an execution in parallel with each recursive call of
the search. In order to allow each worker to operate without
conflict in parallel, we clone the match state (matched-set, in-
sets, and out-sets) at each level. We then use cilk_spawn on
every recursive call in the search allowing the called function
to execute in parallel on another worker. Figure 1 contains
pseudocode for this approach.

This strategy has a number of drawbacks. For inputs graphs
with 1,000 vertices, the match state contains 5,000 integers. On
random graphs of that size, the clone operation is performed
10,000 times and it significantly slows down the performance
of the library. This simple parallel solution runs two to three
orders of magnitudes slower than the serial version on the
problems tested.

Our first solution, what we will call our naive solution, used
coarsening to solve this problem. We called cilk_spawn
only at the 3-4 highest levels of the search, stopping spawning
at a point when many parallel executions had been spawned.
On random input graphs, this results in abundant parallelism
and linear speedup over the serial algorithm with the number
of CPU cores.

A. Random Graph Results

Our intial implementation achieved near-linear speedup with
the number of processors on random graphs.

Results for the naive solution were collected from the
Cilkview application. Cilkview measures the total work
performed and the span of a cilk application by counting
instructions executed. This way, the parallel speedup can be

Fig. 2: Cilkview output for our naive parallelization imple-
mentation working on random graphs. This graph plots the
theoretical speedup in as a black line, the burdened parallelism
as a gray line, and the actual speedup as black points.

measured accurately based on the actual work done. Other-
wise, inflated speedup numbers can be achieved for inputs
where a parallel algorithm will find a solution quickly by luck.

Our results are shown in Figure 2. Even with the scheduling
overhead of running multiple workers, the burden on paral-
lelism was only 312.66/314.71. We consider these results to
be a success for the general problem of subgraph isomorphism.

B. Parasitic Cases and 2D Meshes

Unfortunately, it is not hard to imagine parasitic inputs for
our naive solution. For example, consider if the input graphs
begin extremely linearly and then fan out after 5-6 levels. Our
naive solution will have no spawns to perform in the first few
levels, where our spawns usually occur. Then, in the part of the
graph that contains nearly all of the work, our algorithm will
have only one running worker and spawn no others, giving no
parallelism over the entire graph.

Indeed, in our benchmark suite, we found a series of graphs
for which the naive approach had a parallelism of about 1.
These graphs are two dimensional meshes. The problem with
these meshes is that while the branching factor is high, many
edges introduce vertices with only one new neighbor. This
creates a situation where the search has very low potential
for parallelism. Because our naive strategy relies on abundant
parallelism, especially early in the inputs, we failed to achieve
any speedup. In the next section, we will present our attempts
to remedy this problem.

III. ALTERNATIVE DATA STRUCTURES

Our first attempt at solving the 2D Mesh problem is to use
cilk_spawn at every recursive call. This approach however
is extremely slow. This is not because of scheduling overhead
but because cloning the match state at every level takes a
long time. While other backtracking search problems avoid
this overhead by keeping small data structures, the nature
of subgraph isomorphism is that a potentially large subgraph
must be matched, so data on the current matching needs to
be kept. Further, the heuristics used by Ullmann’s algorithm
and VFLib also require large datastructures. We hoped that
by finding more efficient ways to store this data, it may be
possible to make a copy and spawn at every recursive call,
while only slightly slowing down other operations.

In the original implementation, the one that our naive
solution is based on, all of the data sets are stored using integer
arrays. The arrays are indexed by graph vertex identifier and
contain a zero when that particular vertex is not in the set.
Because the array stores integers, the original implementation
stores numbers in the array which can be used for logging
information required by the backtracking operation.

Our first alternative data structure used map sets to store
data rather than plain arrays. We measured the expected size
of these sets during a typical search and found that as little
as 1− 2% of the graph is being considered at a time, yet the
arrays allocate space for every element. While an array should
provide faster access than a mapset, we hoped the saved cost
from doing a deep copy would offset that slowdown.

Our second alternative used bitsets rather than arrays to
store the matching. While an integer array allows a log of
Match additions to be tracked, it also takes more memory and
may take longer to access when the log functionality is not
needed. Because this logging information needed to be tracked
somehow, we required additional memory structures for this
information.

A. Results

To test our data structures, we measured the runtime of
the various operations and counted their usage. To do this,
we ran our implementation in serial on a random graph input
with 1000 vertexes. Additionally, we counted a clone operation
at every recursive call, rather than using our coarsening
technique.

Our results from data structure testing are summarized in
Figure 3. This figure shows the total runtime per required
clone operation. In general, getNextPair is called 20 times
for every clone operation and the backtrack operation occurs
0.6 times as often as clone. This makes getNextPair an
extremely significant operation. However, if improvements to
the clone operation do not affect getNextPair too much,
we can experience speedups in parallel execution.

Switching the data structures to Mapsets did not have the
desired effect. Searching for next pairs in a mapset was about
10 times slower than the original implementation. Similarly,
backtracking took much longer. Surprisingly, the actual time
spent on copying the data structure also took longer despite

being a supposedly smaller structure. We suspect this is
because cloning a mapset requires multiple link dereferences
while an array clone can use memcpy. These results prevent
us from using mapsets in any way.

Using Bitsets also failed to show much overall improve-
ment. Both generating next pairs and identifying backtracking
steps took more than twice as long with this data structure as
with plain arrays. The actual memory copying process had a
small speed-up when using Bitsets, but this did not offset the
other increased costs.

IV. SPAWNING HEURISTICS

As attempting to decrease the memory overhead such that
it was practical to perform a deep copy at every recursive
call failed, our alternative was to develop a more intelligent
heuristic for performing cilk_spawns. The naive implemen-
tation does spawning only in the first few levels of the graph.
This leaves potentially lost parallelization when several of the
original branches die out and there is only one running worker
and there are potential branches where that worker is running
but their depth is too deep for spawning. So, we consider three
different heuristics that allow spawning at these lower levels.

The first method is simply to use a non-linear cutoff for the
spawn depth. To do this, we tried a logarithmic heuristic such
that some later depths would use spawns again. This heuristic
spawned only if there was no remainder after dividing the
logarithm of the depth by some value.

A second, similar, approach simply repeated the series
of levels of spawns again at deeper depths after the initial
cutoff, allowing spawns to happen again should there be the
opportunity.

These methods, while allowing for deeper spawning, do not
take into account for the number of possible recursions from a

Fig. 3: This figure shows the total runtime per clone operation
in µs for the three most common operations. This data was
collected using the serial version of the algorithm on a 1000
vertex random graph input.

given state. In cases where there are not many possible recur-
sive calls, there should be no reason to copy the entire match
state and trigger a spawn. Instead, the same worker could
continue its work in serial. Furthermore, in cases where there
are many potential branches from a given state, attempting to
make clones and spawn for all recursive calls is likely not the
best use of resources. This is because the number of workers
limits the amount of data that can be worked on in parallel.

Based on these insights, we attempted to apply one more
spawning heuresting. In this heuristic, our implementation
copies and spawns only for the first branch from any given
state. Doing so eliminates the possible overuse of memory
when there are many children.

A. Results

The non-linear cutoff heuristic did not work well. In some
cases, it attempted spawns deep in the search where there
were not multiple neighbors for spawning to create parallelism
from. In other cases, it created a large memory overhead when
copying the data structures many times at levels with too many
vertexes.

Our second heuristic which spawned in the middle of the
tree yielded similar results to the first non-linear spawning
heuristic. Again, we achieved no greater speedup.

To see why we failed to achieve this speedup, we added
structures to the search process which showed us how many
nodes were added at each level in the search. We were
examining these numbers to see whether the graph search ever
fanned out significantly after a fan in. Even in the examples
that most displayed this behavior, once the search has passed
the first significant fan in, the number of vertexes added to
the search after that point were an order of magnitude less
than the number of vertexes that came before. This suggests
that there is very little parallelism to be gained by spawning
heuristics that spawn at those low levels.

Our third heuristic, of spawning only the first child, seems
like a better approach, but also suffers some drawbacks. In a
random graph, with the amount of branching varying by level,
a spawn at the level with the greatest amount of branching will
only happen once. This relies on other branching opportunities
at lower levels to create sustained parallelism.

For 2D meshes in particular, this style of spawning is un-
likely to be particularly beneficial. Any newly spawned branch
will only be effective if it continues for several levels and does
not just end. Particularly on the outside of a 2D mesh, recursive
calls are not likely to have many new children. Because of
this, we expected this heuristic may also fail to achieve much
speedup. Testing confirmed this, with parallelism numbers
near 1.

For our tested graphs, searches were fairly shallow – go-
ing only about 13 levels. This shallowness means that any
good spawning heuristic would need to make some informed
decisions about the structure of the graph and its branching
properties. These decisions could conceivably make use of
max-flow analysis, but this would likely take too much time
to compute. A nearly optimal solution could be written that

� �
f u n c t i o n match (s t a t e 0 , m o d i f y i n g P a r e n t S t a t e ,

2n e e d s T o C l e a n P a r e n t) {
bool i s M o d i f y i n g S t a t e 0 = f a l s e

4s n a p s h o t = s t a t e−>deepClone ()
f o r (p i n s t a t e−>n e x t P a i r ()) {

6needsToCleanUp = ! i s M o d i f y i n g S t a t e 0
i f (i s M o d i f y i n g S t a t e 0) {

8n e x t S t a t e = cleanCopy−>deepClone ()
n e x t S t a t e −> a d d P a i r ()

10} e l s e {
i s M o d i f y i n g S t a t e 0 = t rue

12n e x t S t a t e = s t a t e
n e x t S t a t e −> a d d P a i r ()

14}
c i lk spawn match (n e x t S t a t e , &i s M o d i f y i n g S t a t e 0 ,

16needsToCleanUp)
}

18
i f (n e e d s T o C l e a n P a r e n t) {

20n e x t S t a t e −> backTrack ()
∗m o d i f y i n g P a r e n t S t a t e = f a l s e

22}
}� �

Fig. 4: Pseudocode for the match function with conditional
copying.

is aware of how many workers are currently active, spawning
only when workers are waiting. Our last solution, conditional
copying, is in a similar vein.

V. CONDITIONAL COPY

Our attempts to find good spawn heuristics or alternative
data structures failed, so we attempted to enable spawns at
every level while only performing clones when absolutely re-
quired. Unfortunately, Cilk++ does not provide a mechanism
for determining if there are idle workers, so we were left to
devise a method of our own. Our goal was to copy our data
structure only when a spawn actually caused work to move
to another computation worker (this event is called a steal in
Cilk++.)

To do this, we clone once to create a snapshot at every
step along the backtracking search except for the dead ends.
Pseudocode for the conditional copying match function is
provided in Figure 4. If the search continues in a different
worker, we create a clone from the initial snapshot. Otherwise,
we just continue modifying the state as in the purely serial
version. To detect when recursive calls begin executing in
a different worker, we use a boolean flag. This flag is true
while any worker is modifying the input state. Modification is
finished only when the nested function call returns. Because
this call is spawned, only the nested function call knows when
it is returning. Therefore, we pass this flag by reference to the
nested call so that it can unset the flag when it has finished
modifying the state.

Though this version incurs clone costs at every step except
for dead ends, it still performs well and successfully paral-
lelizes the 2D Mesh cases. The results from this version are
presented in the next section.

(a)

(b)

Fig. 5: Cilkview results for conditional copy implementation
on (a) random graph input and (b) 2D mesh graph input

A. Results

Our primary concern with this implementation was that
we still achieved good performance on random graph inputs.
Results obtained through cilkview are shown in Figure 5a.
This implementation has higher burden than the naive imple-
mentation and therefore doesd not achieve as much speedup.
However, the algorithm continues to obtain good speedup as
the number of CPU cores increases.

Because our goal was to achieve some parallelism on 2D
Meshes as well, we also wanted good cilkview results from
those inputs. These results are shown in Figure 5b. As you can
see, there is less parallelism than in the random case. However,
the implementation does achieve some amount of speedup.

We then compared the runtime of these implementations
with the original library’s runtime on two sets of inputs. The
first set asks for matches between two random graph inputs
with 1000 and 600 vertices. The second set asks for matches
between two adjusted 2D Mesh graphs with 1000 and 600

(a)

(b)

Fig. 6: Cilkview results for conditional copy implementation
on (a) random graph input and (b) 2D mesh graph input

vertices. We plots these results in Figure 6. This figure shows
the speedup on 8 CPU cores against the original runtime of the
input problem. Since we expect faster inputs to experience less
speedup, we focus our attention on the measured speedup for
problems which originally took longer than about 2 seconds.
With these results we found that random graph speedup is
about 6x faster than the serial version. This is to be expected
as the high burden prevents us from achieving 8x speedup on
8 cores.

VI. FUTURE WORK AND POSSIBLE LANGUAGE FEATURES

The first line of additional work for this project involves
removing the need for a snapshot copy in our conditional copy
implementation. We could do this by keeping one clean copy
at the initial state and then maintaining a log of operations as
we perform our search. Then, whenever a clone is required,
we would replay the log on a clone of the initial copy. This
would increase the cost of a clone, but remove the need for
snapshotting at each level.

Our work also suggests some language features for
Cilk++. It would be extremely useful to have a hyperobject
that would abstract the conditional copying code. This could
be a splitter object. This object would “magically” determine
when it was appropriate to clone the underlying data structure

and abstract away the actual operation. This way, the Cilk++
language could handle the process of snapshotting and logging.

VII. CONTRIBUTIONS

Our project has contributed the following:
1) We compared performance of several data structures for

subgraph isomorphism
2) We implemented a faster than current state-of-the-art

subgraph isomorphism match algorithm.
3) We detailed a general approach to dealing with large

data structure copying for spawns in cilk platform
4) We speculated on useful language features to enable

conditional copying in cilk

ACKNOWLEDGMENT

The authors would like to thank Charles E. Leiserson,
Bradley C. Kuszmaul, and Jim Sukha for their guidance
throughout our project and the 6.884 class.

REFERENCES

[1] S. A. Cook, The complexity of theorem-proving procedures, in STOC
’71: Proceedings of the third annual ACM symposium on Theory of
computing. New York, NY, USA: ACM Press, 1971, pp. 151-158.

[2] J. R. Ullmann, An algorithm for subgraph isomorphism, J. ACM, vol. 23,
no. 1, pp. 31-42, January 1976.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, An improved
algorithm for matching large graphs, in In: 3rd IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition, Cuen, 2001, pp.
149-159.

[4] C. E. Leiserson The Cilk++ concurrency platform, in DAC ’09: Proceed-
ings of the 46th Annual Design Automation Conference. New York, NY,
USA: ACM, 2009, pp. 522-527.

