
Concepts in Multicore Programming March 9, 2010

Massachusetts Institute of Technology 6.884

Charles E. Leiserson Handout 10

Lab 4: Breadth-First Search

In this lab, you will implement a bag data structure and use this bag data structure to implement a parallel

breadth-first search. The write-up for this lab is due on Wednesday, March 17 at 11 am.

Reading

• Section 22.2 of CLRS [1].

• Charles E. Leiserson and Tao B. Schardl, “A Work-Efficient Parallel Breadth-First Search Algorithm

(or How to Cope with the Nondeterminism of Reducers),” Submitted for publication, 2010. Web link

provided on Stellar.

1 Serial Breadth-First Search

Breadth-first search is a simple but important algorithm for searching a graph. Given a graph G = (V,E)
with a source vertex s, a breadth-first search (or BFS for short) from s discovers the vertices that are reach-

able for s, and computes the distance (in number of edges) from s to these vertices. A breadth-first search

discovers all vertices at distance k from s before discovering any vertices at distance k + 1.

One standard approach to breadth-first search (e.g. in CLRS, Section 22.2) is to colors vertices as they

are visited. Initially every vertex u starts as white, but u changes to gray when it is first discovered. When

the breadth-first search has finished discovering all vertices v adjacent to u, then u changes to black. The

BFS algorithm in [1] uses a first-in-first-out (FIFO) queue Q to manage the set of gray vertices, as shown in

Figure 1.

(a) For this lab, we have provided code for a simple breadth-first search using a FIFO queue. You

can check out code using the following command:

git clone /afs/csail.mit.edu/proj/courses/6.884/spring10/labs/lab4/ lab4

The provided breadth-first search code runs on test graphs which are stored in binary format.

Since these test graphs are quite large, we have not checked them into the code repository.

Instead, we have copied the test files into the /scratch/6.884 directory on each of cagnode.

Alternatively, you can copy the test files from the directory:

/afs/csail.mit.edu/proj/courses/6.884/spring10/labs/lab4_data

The input files are compressed using bzip2; nevertheless copying these files may take quite

a while. You may also run out of disk quota for your CSAIL AFS account if you attempt to

uncompress all of the the files into your home folder. In general, on each cagnode, you can

create a temporary directory for yourself in /scratch/ to store large files. Note that /scratch

is a drive local to the particular node you are logged into, so any files you create in /scratch

are not visible if you log into a different node.

To build the main program and run a serial breadth-first search on a test graph, type the follow-

ing commands:



Handout 10: Lab 4: Breadth-First Search 2

BFS(G,s)

1 for each vertex u ∈V [G]−{s}
2 color[u] = WHITE

3 d[u] = ∞

4 π[u] = NIL

5 color[s] = GRAY

6 d[s] = 0

7 π[s] = NIL

8 Q = /0

9 ENQUEUE(Q,s)
10 while Q 6= /0

11 u = DEQUEUE(Q)
12 for each v ∈ Adj[u]
13 if color[v] = WHITE

14 color[v] = GRAY

15 d[v] = d[u]+ 1

16 π[v] = u

17 ENQUEUE(Q,v)
18 color[u] = BLACK

Figure 1: Pseudocode for a serial breadth-first search, from CLRS, Chapter 22 [1]. In this code, for every vertex u,

d[u] stores the distance of u from s. The vertex π[u] stores the predecessor of u, that is, the BFS first discovers u by

following the edge (π[u],u).

cagnode1:˜$: make bfs_driver

cagnode1:˜$: ./bfs_driver /scratch/6.884/kkt_power.bin 1 --check

This command executes a BFS of type 1 on the input graph in the file kkt_power.bin, checks

the computed distances, and generates output messages to the console. Type 1 executes the

method bfs_serial, which is a serial version of BFS similar to the one shown in Figure 1. An

enum in bfs_driver.cilk describes the possible types of BFS that can be executed. In later

parts of this lab, you will complete the implementations of these other versions of BFS. The

bfs_driver file also documents some of the other command-line arguments that bfs_driver

supports.

The driver program reads the input graphs in from file, and stores the graphs in a compressed-

sparse-row (CSR) format. The driver program executes a BFS starting from node 0 of the graph.

For more details on the graph implementation, see graph.h and graph.cilk.

Unfortunately, in our initial implementation of breadth-first search, the FIFO queue represents a serial

bottleneck, since the queue imposes an ordering constraint, that vertices are processed one at a time, in the

order they are first discovered. It turns out, however, that one can relax this constraint and still compute the

correct distances from the source. Define layer k, denoted Lk, as the set of all vertices which are at a distance



Handout 10: Lab 4: Breadth-First Search 3

exactly k from the source s. Intuitively, a breadth-first search algorithm is free to process the vertices within

a given layer Lk in any arbitrary order, as long as each of the layers is processed sequentially, that is, for all

k, layer Lk−1 is processed before layer Lk.

(b) Argue that the queue in the breadth-first search algorithm in Figure 1 never contains nodes from

more than two distinct layers.

Create a serial version of breadth-first search that uses two separate queues, one for each layer.

A prototype for this version of BFS has already been provided for you (the bfs_2queue func-

tion in graph.cilk).

2 Using Bags for BFS

To parallelize breadth-first search, we would like to be able to traverse one layer and generate the next layer

in parallel. Instead of storing each layer in a queue, we will the use a bag data structure to maintains an

unordered set. The bag supports operations that allow one to:

• create an empty bag,

• insert an item into a bag,

• union the contents of two bags, destroying one bag and modifying the other, (in the code this operation

is labeled “merge,” since “union” is a reserved keyword in C/C++.)

• split a bag into two disjoint bags (with some fraction of the items moving to a new bag, and the rest

of the items remaining in the current bag), and

• walk the bag data structure, visiting all the items.

For breadth-first search, we can maintain two bags, one for layer Lk and one for Lk+1, and then walk

through the bag for Lk to generate the nodes to insert into the bag for Lk+1.

To parallelize the BFS, we can adopt a divide-and-conquer approach; split an input bag for Lk into

several smaller input bags, walk each of the small input bags in parallel and generate a small output bag for

layer Lk+1, and then union the small output bags together into one final output bag for layer Lk+1. In this

lab, we use a Cilk++ reducer hyperobject for maintaining bags; the reduce function unions two output bags

together.

One straightforward implementation for a bag is to maintain elements as a linked list. With a linked

list, a union operation on two linked lists requires only constant time. Conceptually, it is also easy to split

a linked list into pieces if the split point is given. Unfortunately, efficiently finding a split point which

creates two pieces of roughly equal size seems difficult. Nevertheless for this lab, we provide a linked-

list implementation of a bag, since this implementation illustrates the bag interface and may be useful for

debugging your parallel breadth-first search implementation in later parts of the lab.

(c) We have provided a generic interface for the bag data structure and the associated reducer

in bag.h. We have also provided an implementation of the bag using a linked list in

bag_list.cpp, and test cases for the bag interface in bag_test.cpp. Compile and verify

that the provided linked-list implementation of a bag passes the cases.

cagnode1:˜/lab4$: make bag_test; ./bag_test



Handout 10: Lab 4: Breadth-First Search 4

Figure 2: Two pennants of equal size can be unioned in constant time.

Figure 3: A bag with 23 elements.

(d) Implement a serial BFS which uses the linked-list implementation of bags instead of queues to

store the nodes in a layer. The prototype of this BFS version has been provided (bfs_bag_list

in graph.cilk). The linked-list bag implementation provides a split method which splits off

a constant number of elements from the front the list for the original bag, and returns a new

bag containing these elements. The subroutines bfs_walk_layer and bfs_walk_layer_base

may also be useful for your implementation.

(e) Modify your BFS implementation so the pieces of a bag are traversed in parallel. This parallel

BFS actually contains a data race; is this race a bug? How does your implementation perform

as compared to the serial version? Why might we expect this implementation to have limited

scalability?

3 A Parallel Bag Data Structure

For parallel BFS, we want to improve the linked-list implementation of a bag to provide a more efficient

split method, that is, a split method that creates bags of roughly equal size. This improved bag data

structure is defined in terms of an auxiliary data structure, called a “pennant.”

A pennant is a tree where the root has only one child consisting of a complete binary tree on 2k elements

for some integer k. As illustrated in Figure 2, two pennants A and B both of size 2k may be unioned to form



Handout 10: Lab 4: Breadth-First Search 5

a pennant of size 2k+1 by the following steps.

1. Modify the root of A by adding a second child; the child of B’s root becomes the second child of A’s

root.

2. Modify the root of B so that its only child is the root of A.

3. Return the root of B as the root of the new unioned pennant.

A bag is a collection of pennants, each of a different size. A bag may be represented by an array, list,

or other data structure with pointers to the pennants it contains. One implementation of a bag uses an array

where the kth component of the array contains either a null pointer or a pointer to a pennant of size 2k. We

shall use this representation for descriptive purposes. A pennant xk of size 2k may be added to a bag S as

follows:

1. If S[k] = NULL, set S[k] = xk and terminate.

2. If S[k] = yk, where yk is a pennant of size 2k, union xk and yk to form a pennant xk+1 of size 2k+1, set

S[k] = NULL, and recursively add xk+1 to S.

Note the similarity of this process to that of incrementing a binary counter.

Given three pennants x, y, and z, where each either has size 2k or is empty, we may union them to

produce a pair of pennants (s,c) = f (x,y,z), where s has size 2k or is empty and c has size 2k+1 or is empty.

The following table details the process by which f is computed, where 0 means that the pennant is empty

and 1 means that it has size 2k:
x y z s c

0 0 0 NULL NULL

1 0 0 x NULL

0 1 0 y NULL

0 0 1 z NULL

1 1 0 NULL UNION(x,y)
1 0 1 NULL UNION(x,z)
0 1 1 NULL UNION(y,z)
1 1 1 x UNION(y,z)

The following pseudocode uses this process to union two bags A and B using an auxiliary variable x to

hold a pennant:

1. x = NULL

2. For k = 0 to n do

3. (A[k],x) = f (x,A[k],B[k])

(f) Implement the pennant data structure, and use pennants to create a new bag implementa-

tion. For your convenience, we have provided an interface for your bag data structure in

bag_parallel.cpp.

(g) Use your improved bag implementation to implement a parallel breadth-first search. In

graph.cilk, the prototype of your method, bfs_parallel, has been provided.

If your bag implementation satisfies the interface in bag.h, (as bag_parallel.cpp does),

you should not need to define your own class for the Cilk++ reducer hyperobject. In bag.h,

Bag_reducer is a class template which given any bag implementation implementing the meth-

ods for Bag class template, wraps this implementation for use as a Cilk++ reducer hyperobject.

How does the absolute performance of your parallel BFS compare to performance of the origi-

nal serial BFS on one processor? Does your parallel BFS exhibit parallel speedup?



Handout 10: Lab 4: Breadth-First Search 6

(h) A straightforward implementation of pennants and bags may have high space overhead and be

expensive to traverse if the leaves of each pennant contain only a single element. Coarsen

the base cases of your bag and/or parallel BFS implementations to improve performance.

For convenience, we have provided an interface in bag_opt.cpp, as well as a method

bfs_parallel_opt method that you can complete. Use Cilkview to verify that parallel BFS

implementation is exposing significant parallelism.

After optimizing your bag and BFS implementation, you may discover that despite the high parallelism

reported by Cilkview, you are not achieving significant parallel speedups. For a BFS which performs rela-

tively little work at each node, performance may be limited due to insufficient memory bandwidth. A BFS

that performs more work at each node may exhibit better scalability because it has greater a arithmetic

intensity, i.e., number of arithmetic operations performed on a given memory location.

(i) To observe the effect of changing arithmetic intensity, implement a parallel BFS which arti-

ficially increases the work done at each node. We have provided a prototype for this BFS

(bfs_memtest), which takes in an extra parameter for the amount of artificial work to add. To

create artifical work, we have provided an external library function, trivial(), which gener-

ates empty function calls. (This function is provided as an external library to prevent it from

being optimized away by the compiler.) Test how your parallel BFS scales as you vary the

amount of work performed at each node.

4 Further Exploration

The parallel breadth-first search you have implemented in this lab, using reducers and the bag data structure,

is modeled after the algorithm described by Leiserson and Schardl in [2]. In their paper, they also analyze

the running time of a parallel breadth-first search algorithm similar to the one described in this lab, but where

locks are used to eliminate benign data race. More precisely, for a graph G = (V,E) with diameter D, their

algorithm runs in expected time O((V + E)/P+ D lg3(V/D)) on P processors.

After implementing your parallel BFS, see if you can extend your work in some interesting way. Some

ideas for possible extensions include:

• Using PBFS to compute the transitive closure of a sparse graph.

• Implementing an efficient iterator for your bag data structure. What is the worst-case cost of moving

your iterator to the next element? What is the amortized cost of using the iterator to walk the entire

bag?

• Investigating whether preprocessing your graph and changing the layout can improve performance

when you need to run BFS multiple times on the same graph (possibly from different source vertices).

• Analyzing the runtime of parallel breadth-first search when you allow for benign data races. As we

mentioned in Section 3, the parallel BFS implementation we present actually contains a benign data

race, which can theoretically increase the work of the computation. To avoid this problem, the analysis

in [2] requires additional synchronization using locks; in practice, however, using locks to eliminate

the race may hurt performance for many graphs. Are there ways to keep some benign data races in

practice while still guaranteeing good theoretical properties in the worst case?

Be wary of unconsciously turning this assignment into your term project, however. You should spend

only about 12 hours on this lab.

If you are interested in extending this lab into a term project, some ideas include:



Handout 10: Lab 4: Breadth-First Search 7

• Parallelizing an application which uses breadth-first search (e.g., a model checker).

• Using parallel breadth-first search to compute maximum flows.

• Investigating whether parallel BFS can be extended to work for computing shortest paths. (This idea

may be hard.)

• Parallelizing other graph algorithms.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-

rithms. The MIT Press, third edition, 2009.

[2] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel breadth-first search algorithm (or

how to cope with the nondeterminism of reducers). Submitted for publication, 2010.


