
Concepts in Multicore Programming February 11, 2010

Massachusetts Institute of Technology 6.884

Charles E. Leiserson Handout 7

Lab 2: Parallel Sorting

In this lab, you will use Cilk++ to parallelize a sort function. The write-up for this lab is due on

Wednesday, February 24 at 11 am.

Reading

• Section 27.3 of CLRS, provided on the Stellar website.

• Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Gregory Plaxton, Stephen J. Smith,

and Marco Zagha, “An experimental analysis of parallel sorting algorithms,” Theory of Computing

Systems, Vol. 31, No. 2, 1998, pp. 135–167. Web link provided on Stellar.

• Any background reading on sorting.

Getting started

A serial implementation of three sort functions can be found in csort.cilk. The three sort functions are

• merge sort,

• quick sort, and

• low-order-bit radix sort.

The code, as provided, runs a sort on N rows of data, where each row is a 64-bit key followed by 100

bytes of data. The executable takes N as an optional command-line argument, where N defaults to 106. Since

the program requires about 112 ·N megabytes, and each cagnode has about 8 GB of RAM, you should be

able to go safely up to about 64 million rows without thrashing. You can obtain the code using the following

command:

git clone /afs/csail.mit.edu/proj/courses/6.884/spring10/labs/lab2/ lab2

We use the standard library qsort interface. For more details, you can consult the man pages by typing

man qsort at the command prompt.

The included Makefile builds both a parallel version csort.par and its serialization csort.ser. As

given to you, this code has no cilk_spawn’s in it.

Running the program produces output like this:

$ ./csort.ser 1000000

system qsort(moverows) time randomdata = 0.476078s const data = 0.287815s

system qsort(pointers) time randomdata = 0.349245s const data = 0.158229s

quicksort (moverows) time randomdata = 0.854006s const data = 1.180131s

quicksort (pointers) time randomdata = 0.468307s const data = 0.357168s

mergesort (moverows) time randomdata = 0.944632s const data = 0.865978s

mergesort (pointers) time randomdata = 0.557010s const data = 0.297900s

radixsort (pointers) time randomdata = 0.963987s const data = 0.349216s



Handout 7: Lab 2: Parallel Sorting 2

Each line of output shows two measurements: one for which the sort key is a random 64-bit number, and

one where the sort key is a constant. Lines containing the word “moverows” measure the performance when

the sort routine must permute the entire row. In this case, size == sizeof(struct row), is about 108

(or maybe a little more due to alignment requirements). Lines containing the word “pointers” measure the

performance when an array of pointers is passed, and the size is size==sizeof(struct row *), which is

8 on a 64-bit machine.

The program measures

• the system qsort function (“system qsort”);

• a quicksort that we wrote (“quicksort”);

• a merge sort that we wrote (“mergesort”); and

• a radix sort that we wrote (“radixsort”).

Thus we can see that the system qsort can sort 106 rows in 0.48 s, and it can sort pointers a little faster.

None of our code is quite as fast as the system qsort function, but we get close. Note that radix sort has a

different interface than quicksort and merge sort, since it isn’t given a function. Instead, it is given rows so

it can see the key.

Your assignment is to implement a parallel sort. If you modify one of the provided codes (recom-

mended), you may wish to delete or comment out the calls to the functions that you aren’t working on. For

example, for merge sort you might start by writing the parallel merge sort or quicksort that has Θ(log N)
parallelism by simply spawning the recursive calls. But, we expect you to get more parallelism.

Here are some ideas to get you started:

• For merge sort, consider the algorithm in Section 27.3 of CLRS.

• For quicksort, one way to parallelize the partitioning step is to determine in parallel whether each

element is less than, equal to, or greater than the pivot. Given an array 〈l0, l1, l2, . . . , lm−1〉, where li
says that element i is less than the pivot, you can compute the prefix sum

〈0, l0, l0 + l1, l0 + l1 + l2, . . . , l0 + l1 + · · ·+ lm−2〉 ,

If li = TRUE, then the ith element of the prefix sum tells you the index of where element i should

go in the output of the partitioning step. Problem 27-4 of CLRS shows one way to perform a prefix

computation using Θ(lg m) span and linear work.

• For radix sort, you need to parallelize the construction of the histogram. Some ideas you might try

would be to employ an array of reducers for the histogram. Or you might build a per-worker histogram

and add up the histograms at the end by hand. You may need to reduce the number of histogram entries

to limit the memory pressure. You also might want to consider a high-order-bit radix sort, which has

better cache locality.

• If you are ambitious, you can look into other sorting algorithms such as sample sort or shellsort.

Be wary of unconsciously turning this assignment into your term project, however. You should spend only

about 12 hours on this lab.



Handout 7: Lab 2: Parallel Sorting 3

Ideas for a term project

To turn this lab into a term project, you and your partners could parallelize several sorts and compare the

various algorithms. Several students could work together to implement even more sorts (Batcher sort, bitonic

sort, shellsort, etc.) A paper explaining which sorts are suitable for multicore systems (and why) may be

publishable.

We’ll also be discussing cache-oblivious sorting algorithms later, which can be its own project.

You could implement an out-of-core sort (in which the data is on disk and is too big to fit in RAM).

There is relatively little literature that talks about multicore programming for out-of-core problems.


