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Lab 1c: Collision detection

In this lab, you will use Cilk++ to parallelize a piece of real-world software provided to us by SolidWorks

Corporation, a major vendor of computer-aided design (CAD) software. You will compare different ways to

deal with race conditions, using locks and reducers. Finally, you will write a reducer from scratch and reason

about its performance characteristics. The write-up for this portion of the lab, together with the write-ups

for Lab 1a and Lab 1b, is due on Friday, February 12.

Although you should do all nonoptional steps of this lab, you need not submit documentation demon-

strating that you have done each step. You should feel free to investigate what you see as the interesting

issues in this lab and to document those. Try not to wander too far from the topic of the lab, however.

In this particular lab, you will implement a reducer from scratch. Although this reducer is fairly simple

in concept, there are many interesting issues to deal with in implementation and analysis. Investigating some

of these issues and documenting your findings is a satisfactory direction to take this lab.

As with Lab 1a and Lab 1b, we would like you to comment on some aspect of this lab using NB.

Getting started

We have given you a git repository with the code for this portion of the lab. You can obtain this code using

the following command:

git clone /afs/csail/proj/courses/6.884/spring10/labs/lab1c/ lab1c

Once this repository has been cloned, you should see one subdirectory within the new directory lab1c,

called collision.

1 Collision detection

The collision-detection program reads two data files, each of which comprises a model of an assembly of

three-dimensional parts. The program then compares the models and outputs another data file listing all

the parts (if any) from one assembly that collide with (intersect in three-space with) parts from the other

assembly.

Each model is stored in a ternary (3-way) tree in which the collection of parts is grouped into ever-

smaller partitions of 3D space. At each node of the tree, space is divided into two child partitions. The

left child holds the collection of parts that are located wholly in the first partition, the right child holds the

collection of parts that are located wholly in the second partition, and the middle child holds the collection

of parts that straddle the two partitions.

The structure of the collision-detection search is a recursive in-order traversal through these ternary trees.

Traversal starts at the root of both trees. If the bounding box of one tree does not intersect the bounding box

of the other tree, then there cannot be any collisions, and the search ends. Otherwise, we visit each child

node of the smaller tree and repeat the comparison. At the leaves of both trees, individual parts are compared

and collisions are prepended to a linked list. In this way, both trees are traversed towards the leaves while

branches where the bounding boxes do not intersect are quickly pruned. This algorithm is quite efficient,

especially if the three children of each node are traversed in parallel. The Cilk++ work-stealing scheduler is

highly adept at handling this kind of unbalanced parallelism.

An interesting feature of this implementation of this algorithm is that the ternary tree is constructed

lazily, during the collision-detection process. In the full CAD application, the cost of building the trees is



Handout 6: Lab 1c: Collision detection 2

amortized over a large number of collision-detection invocations. In our lab, however, we are comparing

only two models. The cost of building the ternary tree and computing the bounding boxes actually swamps

the cost of traversing the tree and finding the collisions. Little speedup would therefore be noticeable when

we parallelized the collision-detection code. For this reason, the cilk_main function calls the collision-

detection code twice: once to build the trees with the performance timers turned off, then again with the

timers turned on. This approach gives us a much more accurate view of the speedup obtained through

parallelization.

2 Initial parallelization

In the collision subdirectory, you will find the source code for the collision-detection program. This

industrial code is essentially unmodified from what SolidWorks gave us (and is used with their permis-

sion). The program is invoked with three command-line arguments: two data files containing models and

one output file to receive the list of collisions. The heart of the recursive tree traversal is the function

aabbTreeNode::collideWith, which operates in two modes:

1. If the listOut global pointer variable is set to NULL, then collideWith returns only a boolean value

indicating the presence or absence of a collision, stopping at the first collision. We call this mode

“existential mode”.

2. If the listOut global pointer variable contains the address of a list object, then collideWith

prepends all collisions to that list as they are detected. We call this mode “list mode”.

The main program calls collideWith in the existential mode if the output file is omitted from the command

line. Otherwise it calls it in list mode.

(a) Compile the project in the collision directory. Run it in both existential and list mode on a

pair of small models as follows:

$ collision camera1.wrl camera2.wrl

$ collision camera1.wrl camera2.wrl cameras.serial

(b) In aabbtree.cilk, find function aabbTreeNode::collideWith (near the end of the file).

Toward the end of the function, you will see three recursive calls to nodeIn->collideWith.

(Please ignore similarly named functions, such as iBBox.collidesWith, which are not part of

the recursion.) These three recursive calls are structured sequentially so that the result of the

first call partially determines whether the second call is performed. Rewrite this logic so that

this sequential behavior is retained in existential mode (listOut == NULL), but where all three

calls are made unconditionally in list mode (listOut != NULL).

(c) Change aabbTreeNode::collideWith so that the three recursive calls are made in parallel

when in list mode. Note: If you run this program on multiple cores, it may crash! Double-

check that the program still works on a single core:

$ collision -cilk_set_worker_count=1 camera1.wrl camera2.wrl

$ collision -cilk_set_worker_count=1 camera1.wrl camera2.wrl

cameras.onecore
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(d) Run the program within Cilkscreen on a couple of small models:

$ cilkscreen collision camera1.wrl camera2.wrl

$ cilkscreen collision camera1.wrl camera2.wrl

cameras.parallel

Do both the existential and list modes have races, or just one of them? Identify the cause of the

race(s). We will address this problem in the next steps.

3 Resolving the race with locks

The collision-detection logic is parallel because the program can traverse multiple subtrees simultaneously.

Each parallel call tries to update the same global list, however, resulting in a race somewhere in the list

code. One possible solution is to restructure the code, but that is not always feasible for programs in a

large codebase. As we did for the many-bodies lab, we can resolve this race using mutex locks, with the

expectation of low contention. The use of locks here is less problematic than it was for the N-bodies case

for two reasons:

1. We need only one mutex for the whole program, rather than one per item, as we did in the many-bodies

case.

2. The expectation is that collisions are relatively rare and, therefore, that acquiring the mutex is rela-

tively rare. Recall that acquiring a mutex can be a fairly expensive operation, even in the absence of

contention.

Although we will ultimately use a reducer instead of a lock to resolve the race on the list, it is instructive to

implement a locking solution first and compare the approaches.

(e) In the file aabbtree.h, add #include <cilk_mutex.h>. Find the line that declares listOut,

and add a declaration for a cilk::mutex variable called list_mutex.

(f) Find the line in aabbtree.cilk where push_front is called on (*listOut). Put a

list_mutex.lock(); and a list_mutex.unlock(); before and after the push_front, re-

spectively. Confirm that the program now runs without races on the small models, again sending

the output to cameras.parallel.

(g) Compare the output from the serial execution (cameras.serial) with the results of the parallel

execution (cameras.parallel) using diff on Linux. Why might the outputs be different?

4 Resolving the race with a reducer

Locks resolve data races, but often leave nondeterminism in the code. This nondeterminism might be benign

(e.g., if you don’t care about the order in which collisions are added to the list), or it could be a bug (e.g., if

you do care about the order).

We can preserve the order of the output list by using a reducer_list_prepend hyperobject as a drop-

in replacement for std::list in code that prepends to a list using push_front. Parallel subcomputations

can call push_front on a reducer_list_prepend without locks and without causing data races. When

the parallel use of the reducer is complete, the get_value function returns a reference to an std::list
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containing the same values in the same order as would have occurred in the serial execution. Thus, the result

of this exercise is a collision-detection program that runs in parallel while preserving serial semantics.

(h) Remove the use of mutexes that were added in the previous steps. (A search for “mu-

tex” should find all occurrences easily.) Alternatively, you can copy source files from the

solutions/collision_parallel directory.

(i) Add “#include <reducer_list.h>” to aabbtree.h. Change the data type

aabbTreeCollisionList from std::list<aabbFacetPair> to

cilk::reducer_list_prepend<aabbFacetPair>.

(j) In MultiCoreCollisionDetection.cilk, find the place where outputToBV is called, and

change the use of listOut to listOut->get_reference(). The use of push_front should

not change.

(k) Recompiling and running the program at this point fails. The reason for this failure is because

the function collideWith() in meshprocess.cilk calls the empty() method on the reducer

listOut, which has no such method. Why doesn’t the reducer_list provide this method?

(Because we are only examining one pair of objects for collision, it is simple to resolve this

problem for this lab. This problem is less obviously solved, however, if we were examining in

parallel more than one pair of objects for collisions. Because the collideWith() function in

meshprocess.cilk may be used in either situation, consider solving this problem for the more

difficult case.)

There are several ways to fix this problem. One way is to remove this check from the

collideWith method in meshprocess.cilk, changing the semantics of function in the pro-

cess. (Note that this method, like much industry code, lacks complete documentation.) Another

way is to change the use of listOut to listOut->get_value() in this place. Since querying

the state of a reducer is generally dangerous, why is it okay to examine the reducer’s value in

this case? Choose some way of dealing with this problem, and justify your choice.

(l) Compile and run the program on the same small models as before, saving the output into a new

file:

$ cilkscreen collision camera1.wrl camera2.wrl

cameras.reducer

Compare the output file of the reducer version (cameras.reducer) to the output file of the

serial version (cameras.serial). Are they the same?

(m) Use Cilkscreen to confirm that the program is now race free. Use Cilkview to test its perfor-

mance characteristics when colliding a large model with itself:

$ cilkview -trials one 2 collision highhitch1.wrl

highhitch1.wrl highhitch.out



Handout 6: Lab 1c: Collision detection 5

4.1 Writing a reducer from scratch

The parallelization of this program using a reducer_list may not give the best performance. The

reducer_list reducer uses a linked list as its underlying data structure. A list is a convenient data struc-

ture to implement as a reducer, because two linked lists may be combined in constant time, and therefore

the reduce() operation takes constant time. Walking a linked list can have poor performance in practice,

however, because there is little spatial locality. Moreover, a linked list is hard to manipulate in parallel.

To improve performance, we would like to use an array or vector as the reducer’s underlying data

structure. Combining two vectors is an expensive operation, however, because it requires copying every

element to a new chunk of memory. We can overcome this performance barrier by combining the concepts

of a linked list and a vector into a data structure that we shall call a hypervector.

The hypervector class is a monoid that supports the following operations. Creating an identity

hypervector effectively produces an empty vector. An element may be appended to a hypervector using

a push_back() method. A hypervector right may be appended to the end of a hypervector left using an

associative concatenate() method, which destroys right. Finally a hypervector may be converted into a

normal vector using a get_vec() method.

A simple implementation of a hypervector is a linked list of vectors. The identity hypervector

contains an empty vector and a NULL pointer to the next hypervector in the list. A hypervector right

may be appended in constant time to a hypervector left using an operation similar to appending linked

lists. Finally, the get_vec() operation can convert this linked list of vectors into a single vector by walking

the linked list and copying the contents of each vector in the list into a newly created vector. We can avoid

some slowdown on this last step by parallelizing the get_vec() operation.

(n) We have given you most of the code to implement the basic vector reducer in

reducer_vector.h, but the implementation of the underlying hypervector is missing. Com-

plete the implementation of hypervector, and ensure that your implementation passes all tests

in the hypervector_test.cilk test file.

To implement the get_vec() method, you must fill in the private parallel_get_vec() mem-

ber function. In the current version of Cilk++, a reducer must be implemented as a C++ class,

and its reduce() operation must be serial. We have provided the necessary declarations and

calls to embed a Cilk++ routine in this C++ class to allow get_vec() to be implemented in

parallel, which has created the less-obvious location for implementing get_vec().

(Note: We have found issues using this reducer with the Miser memory manager. For now,

please do not compile your code with -lmiser.)

(o) The reducer_basic_vector implemented in reducer_vector.h is not immediately useful

in our application. The reducer_basic_vector only supports append-style operations, while

aabbtree.cilk uses prepend operations to create listOut. There are several ways to fix

this problem, from modifying the semantics of get_vec() in the hypervector class to writ-

ing a separate (parallel) method to reverse the output of get_vec(). Choose a solution, im-

plement it, and justify your choice. Then, using your solution, modify aabbtree.cilk and

MultiCoreCollisionDetection.cilk to use the reducer_basic_vector reducer, and ex-

amine its performance.

(p) Ideas for exploration: What other ways of implementing hypervectors can you come up with?

Is a list of vectors the best strategy, or might a tree of vectors work better? What is the trade-off
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between a fast reduce() operation and efficient indexing of the hypervector as an array after

it has been computed? Is there a way of making the get_vec() operation run in constant time

and amortizing the conversion over indexing operations after the fact? What theoretical bounds

can be proved?

4.2 Using speculation (optional)

The first thing we did when parallelizing the collision-detection logic was to separate the existential-mode

code, which remained serial, and the list mode code, which we made parallel. The main difference between

these modes is that the list mode always visits every node in the ternary trees, whereas the existential mode

stops executing at the first collision. We can parallelize the existential mode using speculative parallelism,

where more work is performed in the parallel case than in the serial case in an effort to expose parallelism.

This exercise touches on just a couple of approaches to speculation.

(q) Before you change any code, use Cilkview to benchmark the current version in existential mode

when colliding two large models and when colliding one large model against itself:

$ cilkview -trials one 2 collision highhitch1.wrl

highhitch2.wrl

$ cilkview -trials one 2 collision highhitch1.wrl

highhitch1.wrl

Retain the timing numbers (not just the speedup numbers) for comparison with subsequent

versions.

(r) Modify the existential-mode code to store the boolean result of each recursive call to

collideWith in a separate bool variable. Then, remove the conditional logic so that the three

recursive calls are performed unconditionally and the return value is computed as the logical

OR of the three results. Finally, insert cilk_spawns so that the three recursive calls operate

in parallel. The existential mode code should now look similar to the list-mode code (and you

might want to merge them back into a single piece of logic). Use Cilkview to test the perfor-

mance of this version of the program when colliding two large models and when colliding one

large model against itself, as we did in the previous step. Do you obtain consistent speedup or

slowdown versus the serial version?

As is the case with speculation, the existential-mode logic does more work than is necessary to solve the

problem. Our current version of the logic, however, does so much more excess work that we have an overall

slowdown, even with parallelism. What we would like to do is to terminate the recursion as soon as possible

after one of the branches has found an answer. We can do so by introducing a boolean doneFlag variable

and testing it at strategic places.

(s) In aabbtree.h, declare extern volatile bool doneFlag; (preferably near where listOut

is declared). In aabbtree.cilk, define volatile bool doneFlag = false;. Set the flag

to true upon seeing a collision (creating a benign race). Check the flag just before re-

cursing in collide, and return immediately if it is true. Finally, in the cilk_main func-

tion in MultiCoreCollisionDetection.cilk, set doneFlag = false just prior to calling

mesh1->collideWith(mesh2) (in both places it is called). Rerun your timing tests.
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(t) (Optional) Because setting and reading doneFlag in parallel is a race, albeit a benign one, the

Cilkscreen race detector reports a race on every access to doneFlag. To quiet the race detector,

we can use a fake lock for the doneFlag. First, include fake_mutex.h in aabbtree.h, and

add a declaration for a cilk::fake_mutex variable called fake_mutex near the declaration of

doneFlag in aabbtree.h. Next, insert a call to fake_mutex.lock() before every access to

doneFlag, and fake_mutex.unlock() afterwards. These calls add no overhead to the com-

piled code but tell Cilkscreen that the access is safe. (Be careful, because fake locks can also

be used to tell Cilkscreen that something is safe even when it is not!) Run the new code in

the Cilkscreen race detector (use small models for speed), and confirm that there are no races

detected.


