
Concepts in Multicore Programming February 4, 2010

Massachusetts Institute of Technology 6.884

Charles E. Leiserson Handout 5

Lab 1b: Many-Body Simulation

In this lab you will learn to use Cilkview and Cilkscreen to debug your program (whether it’s a “per-

formance bug” or race). You will also see how a program can be parallelized differently, and depending on

how the parallelism is organized, one way may be more efficient than the other.

Again, you should spend 4 hours or less on this lab, and you should try to do most of the work minus

write-up by class on next Tuesday. Lab 1c will be handed out on next Tuesday, and the write-up is due on

next Friday, which will require more of your time.

Although you should do all the steps of this lab, you need not submit documentation demonstrating

that you did every step. Since the focus of the class is on independent discovery, you should feel free

to investigate what you see as the interesting issues and document those. You should not wander too far

from the topic of the lab, however. For example, for this part of the lab, it may be interesting to explore

different ways to parallelize the N-Bodies simulation or dividing up the iteration space differently (than

what’s suggested in 1.3). Remember, however, this may end up costing you more than 4 hours. If you

choose to do so, you should be conscious about how much time you are spending on this part of the lab.

Like lab 1a, we will upload this lab handout to NB, and we would like you to make at least one comment

about some aspect of this lab using NB.

Getting Started

We have given you a git repository with the code for this portion of the lab. You can obtain this code using

the following command:

git clone /afs/csail.mit.edu/proj/courses/6.884/spring10/labs/lab1b/ lab1b

Once this repository has been cloned, you should see one subdirectory within the new directory lab1b,

called nbodies. The source for this portion of the lab is in this subdirectory.

1 N-Bodies Simulation

In this part, you will modify a program that simulates a set of planetary bodies drifting in space in the

neighborhood of a single, massive “sun.” Each body bi (including the sun) has a mass mi and an initial

velocity vi, and is attracted to another body b j of mass m j by a force fi j, which obeys the formula for

gravitational attraction,

fi j = G
mim j

r2
,

where G is the gravitational constant, and r is the distance between the bodies. The force on bi is directional

and pulls bi towards b j. The total force fi on body bi is the vector sum of the forces fi j for all j 6= i.

The N-bodies simulation program begins by creating N bodies (the number N is specified on the com-

mand line) with randomly-selected masses in a random distribution around the sun. All of the bodies are

given initial velocities such that the entire system appears to have a clockwise spin. A two-dimensional

coordinate system is used for simplicity.

The simulation progresses by computing successive positions of each of the N bodies for successive

moments in time using a two-pass algorithm. The first pass computes the force on each body as the sum of

the forces exerted on it by all of the other bodies in the system. The second pass adjusts the velocity of each



Handout 5: Lab 1b: Many-Body Simulation 2

body according to the force computed in the first pass and moves the body’s position according to its average

velocity during that quantum of time. Every few time quanta, a snapshot of the entire system is rendered as a

picture in png format. You can view the result as a short movie using the provided JavaScript-powered web

page. After running the nbodies binary, type make publish to copy the nbodies.html file and your PNG

outputs to your CSAIL webpage. Then visit http://people.csail.mit.edu/<username>/nbodies/ to

view your movie.

Note that the execution times for these programs can be fairly long. Since Cilkview runs the program

at least 5 times, expect to wait several minutes for a Cilkview run to complete. You may wish to reduce the

number of images produced to save time. If you choose to do so, do not reduce the number of bodies in the

simulation, or you will reduce the total parallelism in your program.

When running Cilkscreen to detect races, you can and should reduce the number of bodies and images

produced to a bare minimum (e.g. 10 bodies and 2 images). Note that if you produce fewer images the

visualization will be truncated, and the web page may display some parts of the previous run if there were

leftover PNG files in your directory.

1.1 Burdened parallelism in the N-bodies simulation

The file nbodies_loops.cilk implements the n-body simulation. The calculate_forces function uses

a pair of nested loops to compute the forces for every pair of bodies. The update_positions function uses

a single loop to update the position of each body.

The nbodies binary accepts two arguments: the first is the number of bodies in the simulation (defaults

to 300), and the second is the number of PNG frames to produce (defaults to 100). The number of simulation

steps computed between frames is 40. All of these defaults and constants may be changed by modifying the

#defines at the top of the file.

(a) Compile nbodies_loops using make, and run it with the default number of bodies (300). View

the simulation in a web browser by running make publish and visiting:

http://people.csail.mit.edu/<username>/nbodies/.

Click the “Start” button to view the movie. (JavaScript must be enabled.) Paral-

lelize the program by changing the loop in update_positions() and the inner loop in

calculate_forces() to cilk_for. Run the program in Cilkview and report the results.

(b) Unlike in the matrix-multiplication example, you cannot parallelize the outer loop in

calculate_forces, because doing so would cause multiple iterations to race on updating a

single body’s forces. (Try it in CilkScreen if you want.) However, you can invert the inner and

outer loops of your current code so that the cilk_for loop over i is on the outside. Try it, and

report your results from Cilkview. Which version is faster and why?

By default, the Cilk++ runtime divides the cilk_for loop into chunks containing one or more

iterations. Each chunk is spawned, and code in a chunk is executed serially. The number of loop

iterations in a chunk is called the grain size. One can manually set the grain size by placing

cilk_grainsize pragma just before the cilk_for:

#pragma cilk_grainsize = expression

If the grain size is not set, the Cilk++ runtimec chooses some sensible default value, based on

the number of workers. You may try to use this pragma to set the grain size, and run the code



Handout 5: Lab 1b: Many-Body Simulation 3

through CilkScreen. Depending on what you set the grain size to, you may see some difference

in the amount of parallelism in the code.

1.2 Resolving races with locks

The formula for computing the gravitational force between two bodies bi and b j is symmetrical such that

f ji = − fi j (i.e., the magnitude of the force on both bodies is the same, but the direction is reversed.) Our

current implementation of the N-bodies simulation, however, computes each force twice: once when com-

puting the force that b j applies to bi, and again when computing the force that bi applies to b j. We can halve

the total number of iterations in calculate_forces if we take advantage of this fact and compute the force

only once for each pair of bodies.

In the file nbodies_symmetric.cilk, we have modified the inner loop in calculate_forces to avoid

calculating forces that have already been computed in an earlier iteration (according to the serial ordering).

When computing a force fi j and adding it to fi, we also compute the inverse force f ji and add it to f j.

Unfortunately, this simple optimization has its problems, as we shall see.

(c) In nbodies_symmetric, parallelize update_positions and the outer (i) loop of

calculate_forces. Compile nbodies_symmetric and run it with a command-line argument

of 300. Did we see the expected speedup of 2 versus the (parallel) version of nbodies_loops?

Run the program again in the CilkScreen race detector, but shorten the run time by using a

command-line argument of 10 instead of 300. Where did the races come from, and why weren’t

they visible in the initial run?

(d) One way to fix the race is to use a mutex (mutual exclusion) lock to mediate concurrent

access to each object. Add a member mtx, of type cilk::mutex to the Body struct. In

add_forces, insert the statement “b->mtx.lock();” before updating b->xf and b->yf and

insert “b->mtx.unlock();” after updating them. Run the program with Cilkview (using the

original command-line argument of 300) and report the theoretical and actual speedup.

1.3 Solving races without locks

For sufficiently large data sets, the previous solution should produce little lock contention. Nevertheless,

both locks and atomic instructions are expensive, even in the absence of contention, because they interrupt

the CPU’s pipeline and serialize operations that the CPU would have internally performed in parallel. It

would be ideal if we could parallelize the N-bodies problem without introducing data races at all, thus

eliminating the need for locks or atomic instructions.

Matteo Frigo, one of the authors of Cilk++, came up with one such solution that uses divide-and-conquer

parallelism in a way that ensures that no two parallel strands will attempt to modify the same body. His

algorithm, with the Cilk keywords removed, is implemented in the file nbodies_nolocks.cilk.

Figure 1 shows the core of the program. The lines labeled [A] (Lines 44–45) can be executed in parallel

with each other. Similarly, the lines labeled [B] (lines 16–17) can be executed in parallel with each other, and

the lines labeled [C] (lines 18–19) can be executed in parallel with each other. This program is not meant to

be obvious. Let’s explore what it does.

The serial program is equivalent to calling add_force(&bodies[i], fx, fy); and

add_force(&bodies[j], fx, fy); for all 0 ≤ i ≤ j < N. Another way to look at it is that a plot of the

points (i, j) such that 0 ≤ i ≤ j < N comprise the shaded area shown in Figure 2.



Handout 5: Lab 1b: Many-Body Simulation 4

1 // update the force vectors on bi and bj exerted on each by the

other.

2 void add_force(Body* b, double fx, double fy)

3 {

4 b->xf += fx;

5 b->yf += fy;

6 }

7
8 /* traverse the rectangle i0 <= i < i1, j0 <= j < j1 */

9 void rect(int i0, int i1, int j0, int j1, Body *bodies )

10 {

11 int di = i1 - i0, dj = j1 - j0;

12 const int THRESHOLD = 16;

13 if (di > THRESHOLD && dj > THRESHOLD) {

14 int im = i0 + di / 2;

15 int jm = j0 + dj / 2;

16 rect(i0, im, j0, jm, bodies ); // [B]

17 rect(im, i1, jm, j1, bodies ); // [B]

18 rect(i0, im, jm, j1, bodies ); // [C]

19 rect(im, i1, j0, jm, bodies ); // [C]

20 }

21 else {

22 for (int i = i0; i < i1; ++i) {

23 for (int j = j0; j < j1; ++j) {

24 // update the force vector on bodies [i] exerted

by bodies [j]

25 // and , symmetrically , the force vector on

bodies [j] exerted

26 // by bodies [i].

27 if (i == j) continue;

28
29 double fx, fy;

30 calculate_force (&fx, &fy, bodies [i], bodies [j]);

31 add_force(&bodies [i], fx, fy);

32 add_force(&bodies [j], -fx, -fy);

33 }

34 }

35 }

36 }

37
38 // traverse the triangle n0 <= i <= j < n1

39 void triangle(int n0, int n1, Body *bodies )

40 {

41 int dn = n1 - n0;

42 if (dn > 1) {

43 int nm = n0 + dn / 2;

44 triangle(n0, nm, bodies ); // [A]

45 triangle(nm, n1, bodies ); // [A]

46 rect(n0, nm, nm, n1, bodies );

47 }

48 else if (dn == 1) {

49 // Do nothing. A single body has no interaction with

itself .

50 }

51 }

52
53 void calculate_forces (int nbodies , Body *bodies ) {

54 triangle(0, nbodies , bodies );

55 }

Figure 1: A lock-free code for N-bodies.



Handout 5: Lab 1b: Many-Body Simulation 5

j

N

N

i

Figure 2: Traversing the space, 0 ≤ i ≤ j < N

i

jn0 n1nm

Figure 3: Cutting a triangle into two smaller triangles and a rectangle

Procedure triangle traverses this triangle in parallel, and in fact it is a little bit more general, because

it traverses any triangle of the form n0 ≤ i ≤ j < n1. Initially, we set n0 = 0 and n1 = N in cilk_main.

Procedure triangle works by recursively partitioning the triangle. If the triangle consists of only one

point, then it visits the point (n0,n0) directly. Otherwise, the procedure cuts the triangle into one rectangle

and two triangles, as shown in Figure 3.

The two smaller triangles can be executed in parallel, because one consists only of points (i, j) such

that i < nm and j < nm, and the other consists only of points (i, j) such that i ≥ nm and j ≥ nm. Thus,

the two triangles update nonoverlapping regions of the force array, and thus they do not race with each

other. However, the rectangle races with both triangles, and thus we need a cilk_sync statement before

processing the rectangle.

To traverse a rectangle we use procedure rect, which also works recursively. Specifically, if the rectan-

gle is large enough, the procedure cuts the rectangle i0 ≤ i < i1, j0 ≤ j < j1, into four smaller subrectangles,

as shown in Figure 4.

The amazing thing is that the two black subrectangles can be traversed in parallel with each other without

races. Similarly, the two gray subrectangles can be traversed in parallel with each other without races.



Handout 5: Lab 1b: Many-Body Simulation 6

i

jm j1
j

j0

i1

im

i0

Figure 4: Dividing a rectangle into four

However, the black subrectangles race with the gray, so we must use a cilk_sync statement after processing

the first pair of subrectangles.

To see why there are no races between the two black subrectangles (the same argument applies to the

gray) observe that the i-ranges of the two subrectangles do not overlap, because one is smaller than im and

the other is larger. For the same reason, the j-ranges do not overlap either. In order for races not to occur,

however, we must also prove that the i-range of one subrectangle does not overlap with the j-range of the

other, because we are updating both bi and bj. This property holds because when triangle calls rect

initially, the i-range is n0 ≤ i < nm, whereas the j-range is nm ≤ j < n1, so the two ranges never overlap.

This algorithm partitions the original data into smaller and smaller subsets. Thus, in addition to avoid-

ing races and locks, the algorithm exploits cache locality in a way similar to that of the recursive matrix-

multiplication example.

(e) The file nbodies_nolock.cilk implements Matteo’s algorithm as a serial program. Add

cilk_spawn and cilk_sync statements to take advantage of the parallelism described in the

previous section. Briefly describe the changes you made. Also add a cilk_for to parallelize

the update_positions function.

(f) Confirm that the program is race free by running it in the race detector (use only 10 bodies

to avoid long run times). Run the program in Cilkview and report the results. Compare the

performance to runs of earlier versions of the program.


