
Concepts in Multicore Programming February 2, 2010

Massachusetts Institute of Technology 6.884

Charles E. Leiserson Handout 4

Lab 1a: Cilk++ warm-up

In this lab you will learn how to write parallel programs with Cilk++. In the first part of the lab, you will

be introduced to the Cilk++ concurrency platform and learn how to use the Cilkview and Cilkscreen tools.

You should spend 4 hours or less on this lab, and you should try to do most of the work minus write-

up by class on Thursday. Since Labs 1b and 1c will be handed out on this Thursday and next Tuesday,

respectively, and will require more of your time, do not spend too much time on Lab 1a.

Although you should do all the steps of this lab, you need not submit documentation demonstrating

that you did every step. Since the focus of the class is on independent discovery, you should feel free to

investigate what you see as the interesting issues and document those. You should not wander too far from

the topic of the lab, however. For example, for this part of the lab, it suffices to provide a few paragraphs

describing what you learned while devising your best matrix-multiplication code and hand in a Cilkview

plot documenting the performance of your code.

We will also upload this lab handout to NB. As one requirement for this lab, we would like you to make

at least one comment about some aspect of this lab by using NB (http://nb.csail.mit.edu) to annotate

this lab handout (lab1a.pdf).

If you don’t have a basic familiarity with C/C++, here are some on-line tutorials which might prove

useful:

• http://www.cplusplus.com/doc/tutorial/

• http://www.learncpp.com/

• http://www.cprogramming.com/tutorial.html#c++tutorial

• http://www.cs.wustl.edu/˜schmidt/C++/

A tutorial on C++ will also be scheduled next week for those interested.

Getting Started

Before beginning this lab, please make sure you have followed the instructions on the course website for

setting up and configuring access to the class resources, outlined in Handout 3, “Getting Started.”

We have given you a git repository with the code for this portion of the lab. You can obtain this code

using the following command:

git clone /afs/csail.mit.edu/proj/courses/6.884/spring10/labs/lab1a/ lab1a

Once this repository has been cloned, you should see two subdirectories within the new directory lab1a:

qsort and mm.

We are giving you a git repository for the lab to give you easy access to version control tools as you

experiment with the lab code. There is no need to submit code for this part of the project via git; the

repository is solely for your personal use. For more information on using git, please take a look at the Git

user’s manual at http://www.kernel.org/pub/software/scm/git/docs/user-manual.html.



Handout 4: Lab 1a: Cilk++ warm-up 2

Helpful Hints

• When running a Cilk++ program, you may specify the number of worker threads to N using the

-cilk_set_worker_count=N command line parameter (defaults to the number of cores on the sys-

tem).

• When using Cilkview or Cilkscreen, you should run your programs on smaller inputs than when

simply running them standalone since there is a large performance penalty for instrumentation.

• You can use the -help flag with Cilkview or Cilkscreen to see an explanation of all command line

flags for these programs.

1 Examining a Parallel Quicksort

In this problem, you will experiment with an existing Cilk++ project, and learn how to use the Cilkview

Performance Analyzer and Cilkscreen Race Detector. You should make running your Cilk applications

through Cilkview and Cilkscreen a standard practice.

1.1 Measuring performance with Cilkview

The sources for this exercise can be found in the qsort subdirectory. Build the qsort binary by running

make. This will produce a parallel quicksort binary. The binary takes two optional arguments. The first

specifies the number of data points (defaults to 10 million), and the second specifies the number of trials to

run (defaults to 1).

(a) Run quicksort with the 10,000,000 data points (the default) using 1 through 12 threads using

the Cilkview tool:

cilkview -trials all 12 ./qsort.64

What are the execution times? What happens when you run qsort with more threads than there

are processors on the cagnode machines (8)?

Cilkview Tip: Other active processes on the cagnodes may affect the observed performance of

your program in unexpected ways. To mitigate this effect, you may wish to run trials on your

program multiple times and record the best performance observed for some trial over all runs.

Cilkview can record the best performance seen for some trial automatically using the -append

flag as follows:

cilkview -trials all 12 -append ./qsort.64

For more information on this feature, see the Cilk++ Programmer’s Guide.

Cilkview generates a speedup graph with parallelism bounds and measured speedup. If you

enable X11 forwarding when logging into the cagnodes, you will see this graph automatically

displayed when Cilkview terminates. (If you do not you may see some harmless warning con-

cerning wxWidgets and “difficulty fitting plot titles into key.”)

The results of your tests are saved to a file, so you can load the results into gnuplot and

manually view the speedup graph later. To do this, login to one of the cagnodes with X11 for-

warding enabled, run gnuplot, and enter load "qsort.plt". (You must place quotes around



Handout 4: Lab 1a: Cilk++ warm-up 3

qsort.plt in order for gnuplot to parse the command correctly.) Alternatively you may copy

the files qsort.csv and qsort.plt to your Athena home directory, log in to an Athena cluster

machine, run gnuplot, and enter load "qsort.plt".

Cilkview Tip: You may wish to generate an eps file of your Cilkview speedup graph for inclusion

in your write-up. You can make gnuplot generate this file for you by adding the following lines

to the top of qsort.plt:

set terminal postscript eps color

set output "qsort.eps"

Loading this modified qsort.plt file into gnuplot will cause gnuplot to create the file

gsort.eps, which you may then include in your write-up.

1.2 Detecting races with Cilkscreen

(b) Uncomment the following line near the top of the file to introduce a race condition in the parallel

code:

#define INTENTIONAL_RACE

Look at the code enabled by this change and explain how the race could cause quicksort to fail

to sort the array of integers.

(c) Run qsort through Cilkscreen using the following command:

cilkscreen ./qsort.64 1000

Is Cilkscreen able to detect the race? How many races does Cilkscreen detect? How many races

does Cilkscreen detect when sorting 10000 integers?

Note that Cilkscreen runs the program using a single worker, and therefore will experience no

multicore speedup. For more information on Cilkscreen and its effect on performance, see the

Cilk++’s Programmer’s Guide.

2 Matrix Multiplication

In this part, you will write a multithreaded program in Cilk++ to implement matrix multiplication. One of the

goals of this assignment is for you to get a feeling of how work, span, and parallelism affect performance.

First, you will parallelize a program that performs matrix multiplication using three nested loops. Then,

you will write a serial program to perform matrix multiplication by divide-and-conquer and parallelize it by

inserting Cilk keywords. Finally, you will implement a parallel version of Strassen’s algorithm.

For those of you who have not looked at matrix multiplication in a little while, the problem is to compute

the matrix product

C = AB ,

where C, A, and B are n× n matrices. Each element ci j of the product C can be computed by multiplying

each element aik of row i in A by the corresponding element bk j in column j in B, and then summing the

results, that is,

ci j =
n

∑

k=1

aikbk j .



Handout 4: Lab 1a: Cilk++ warm-up 4

For more information on matrix multiplication, please see http://en.wikipedia.org/wiki/Matrix_

multiplication#Ordinary_matrix_product.

The nested-loop and divide-and-conquer versions of these programs can be adapted to work with arbi-

trary rectangular matrices. To simplify the interface, however, we limit ourselves to n× n square matrices

where n is an exact power of 2.

2.1 Matrix multiplication using loop parallelism

The sources for this exercise can be found in the mm subdirectory.

The file mm_loops.cilk contains two copies of a Θ(n3)-work matrix multiplication algorithm using a

triply nested loop. The first copy (mm_loop_serial) is the control for verifying your results — leave it un-

changed. The second copy (mm_loop_parallel) is the one that you will parallelize. This file also contains

a test program that verifies the results of your parallel implementation and also provides infrastructure for

timing and measuring parallelism.

(d) Compile mm_loops using make, and verify that it operates correctly. Supply the --verify

command-line option to force running all tests.

(e) Now parallelize the mm_loop_parallel function by changing the outermost for loop into

a cilk_for loop. Verify correct results with the --verify option. Run Cilkview on your

program and report the theoretical and actual speedup. Do not use the --verify option when

running Cilkview.

(f) Change the outermost cilk_for back into a serial for loop and change the middle for loop

into a cilk_for loop. Repeat the test with the --verify option, and then report the results

from Cilkview. Did any results change? Try making both loops parallel. Which of these

combinations produces the best results?

2.2 Matrix multiplication by divide-and-conquer

Divide-and-conquer algorithms often run faster than looping algorithms, because they exploit the micropro-

cessor cache hierarchy more effectively. This section asks you to write a divide-and-conquer implementation

of matrix multiplication. You will find the source code for the incomplete program in mm_recursive.cilk.

The program contains two implementations of matrix multiplication. The mm_loop_serial function is the

same as before and is provided for verification and timing comparisons. The mm_recursive_parallel

function is the skeleton of a divide-and-conquer implementation.

Your recursive implementation will be based on the identity

[

A11 A12

A21 A22

][

B11 B12

B21 B22

]

=

[

A11 ·B11 + A12 ·B21 A11 ·B12 + A12 ·B22

A21 ·B11 + A22 ·B21 A21 ·B12 + A22 ·B22

]

,

where A11, A12, etc., are submatrices of A. In other words, matrix multiplication can be performed by sub-

dividing each matrix into four parts, then treating each part as a single element and (recursively) performing

matrix multiplication on these partitioned matrices. (The number of columns in A11 must match the number

of rows in B11, and so forth.) Although the algorithm operates recursively, its work is still Θ(n3), the same

as the straightforward algorithm that employs triply nested loops.



Handout 4: Lab 1a: Cilk++ warm-up 5

(g) Compile mm_recursive, and verify that it compiles but fails to run successfully when us-

ing the --verify command-line argument. The failure is caused by the fact that the

mm_recursive_parallel has not been fully implemented yet.

(h) In the file mm_recursive.cilk, fill in code in the mm_internal function to implement the

divide-and-conquer algorithm. The error-prone task of subdividing the matrices into four parts

has been done for you. All you need to do is to fill in the recursive calls (eight in total –

one for each of the eight matrix-multiplications in the algorithm). Make sure to carefully read

the comments in mm_internal before you begin. Compile and run your new mm_recursive

program and verify that it runs successfully.

(i) Which recursive calls to mm_internal may be legally executed in parallel with one another and

why?

Make your recursive function parallel by adding the cilk_spawn keyword in front of some

of the recursive calls. You will need to add calls to cilk_sync as well in order to separate

recursive calls that would otherwise cause a data race and to ensure that all of the work is

complete before returning from the function.

Compile and run your new mm_recursive program. Verify that it is correct and report the

results given by Cilkview. For large matrices, how does the performance of the recursive algo-

rithm compare with the nested-loops algorithm on a single processor?

(j) Uncomment the line near the top of the program that reads:

#define USE_LOOPS_FOR_SMALL_MATRICES.

This change causes the algorithm to change from divide-and-conquer recursion to a triply nested

loop for small matrices. How does this change impact performance? How does the performance

of this new version compare to the previous versions?

2.3 Matrix multiplication by Strassen’s algorithm

For large matrices, Strassen’s algorithm can outperform the other two methods we’ve seen, because it entails

Θ(nlg 7) = O(n2.81)-work, rather than Θ(n3). Section 2.3.1 describes Strassen’s algorithm in detail (although

it doesn’t provide insight as to how Volker Strassen discovered this bizarre method). Section 2.3.2 describes

the exercise itself.

2.3.1 Description of Strassen’s Algorithm

Strassen’s algorithm can multiply two n× n matrices in Θ(nlg 7) = O(n2.81) work, which is asymptotically

better than more straightforward methods that require Θ(n3) work. Let A and B be two n×n matrices. For

the rest of the assignment, assume that n is an exact power of 2. Recall that the product of A and B is defined

to be C = AB, where

Ci j =
n

∑

k=1

AikBk j .

Although this definition leads to a straightforward Θ(n3)-work algorithm to compute the product, a remark-

able identity can be exploited which leads to a divide-and-conquer algorithm with work Θ(nlg 7) = O(n2.81).



Handout 4: Lab 1a: Cilk++ warm-up 6

Partition C, A, and B as follows:

C =

[

C11 C12

C21 C22

]

, A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

.

Then, we have
[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

][

B11 B12

B21 B22

]

.

Instead of doing the usual divide-and-conquer, perform the following calculations:

M1 = (A11 + A22)(B11 + B22),

M2 = (A21 + A22)B11,

M3 = A11(B12 −B22),

M4 = A22(B21 −B11),

M5 = (A11 + A12)B22,

M6 = (A21 −A11)(B11 + B12),

M7 = (A12 −A22)(B21 + B22).

We can now express C in terms of the M’s as follows:

C11 = M1 + M4 −M5 + M7,

C12 = M3 + M5,

C21 = M2 + M4,

C22 = M1 −M2 + M3 + M6.

If all intermediate results are appropriately saved, a multiplication of size n can be reduced to 7 multiplica-

tions of size n/2, plus 18 matrix additions.

2.3.2 Matrix-multiplication using Strassen’s algorithm

(k) Modify your divide-and-conquer solution implement Strassen’s algorithm. Verify its correct-

ness, run cilkscreen and run cilkview.

For some applications, Strassen’s algorithm produces lower-quality answers than the standard algorithm

does due to loss of precision from round-off error. You may not actually see round-off error using our test

code, since the matrices are initialized with random integers.


