Representations for KBS: Semantic Networks

6.871 Lecture 7

Outline

- Quillian's foundations: associations
- Implicit meanings for uniform links
- Knowledge-related primitives [eg. CDs]
- Concern for semantics of the language
- Structured inheritance networks [eg. KL-ONE]
- Where the field is today

Preview

- Semantic networks have evolved:
 - Shift in motivation from modeling cognitive processes to addressing computational issues.
 - Shift in representation goals from "all human memory" to certain types of knowledge [eg. definitions vs. assertions, classes vs. instances]
 - Semantics of links have become less intuitive and more formally defined.
 - Shift in reasoning mechanisms suited to more careful definitions of primitives.

What is a Semantic Net?

- What's a net?
- What a semantic net?
- Where do the semantics come from?

Questions for Semantic Nets

- Regarding the original motivation
 - How should we view the world?
 - What are the recommended inferences?
- Regarding the representation formalism:
 - (What) are the(re) primitives?
 - The primitives of a KR technology are those things "the interpreter is programmed in advance to understand" [Brachman]
 - What knowledge can we express?
 - What does a concept mean?
 - May be what the machine infers
 - May be a formal answer
- Regarding the reasoning mechanism:
 - What are the easy/automatic inferences?
 - How efficient can we make these?

Semantic Memory [Quillian, 1966]

- Motivations
 - Understand the structure of human memory, and its use in language understanding
 - What sort of representational format can permit the "meanings" of words to be stored, so that humanlike use of these meanings is possible?
- Psychological evidence that memory uses associative links in understanding words
Semantic Memory [Quillian, 1966]

- Motivations:
 - Claim that people use same memory structure for a variety of tasks
- Wish to encode dictionary definition of words.
- And then:
 - Comparing and contrasting meanings of two words
 - Generating quasi-English sentences to describe the comparison

Semantic Memory Formalism

- Plane: A network of nodes and links for representing the definition of a word "concept"
- Nodes:
 - Type nodes: Direct representation of word [one per plane]
 - Token nodes: Denote a type node in some other plane
- Link types
 - Type node A is a subclass of B
 - A, B, and C disjunctive [conjunctive]
 - A relates B and C
 - A is a token associated with type node A
 - A modifies B [an "escape hatch"]

Semantic Memory Formalism

- Expressiveness: Any word with a dictionary definition
- Meaning of a concept: two answers
 - Dictionary definition in its plane.
 - "Full concept": transitive closure of all links
 - Size ??
- Focus is on nodes: in use links are merely connections

Semantic Memory Reasoning

- Comparing meanings of two words: via "spreading activation"
 - Intersections in unguided breadth-first search
 - General purpose
 - Is this "closest path" the shared meaning?
- Describing the comparison:
 - Trace the links leading to the intersections.
Spreading Activation

Cry is among other things to make a sad sound.
To comfort can be to make something less sad.

Primitives?

- What's primitive in Quillian?
- Why primitives?
- Approaches to primitives:
 - Language independent: Conceptual dependencies
 - Language [English] dependent: OWL

Conceptual Dependency

- A strongly reductionist approach
- Five primitive categories of knowledge
 - Actions [Eg. Propel, Ingest, Ptrans, Mtrans]
 - Tenses [Eg. Present, Fast, Future]
 - Objects [any noun]
 - Modifiers of actions: case frames [eg. object, subject, recipient]
 - Modifiers of objects
- Combining primitives yields standard scenarios
 - building blocks world knowledge.

Example CDs

Basic dependency

Combining 2 dependencies

More Complex:

- John Propel cart
- John Ingest ice cream spoon
Conceptual Dependency

- Motivation: Provide a canonical form for world knowledge expressible in any natural language.
- Why a canonical form is valuable
 - Deciding whether two expressions have the same meaning.
 - If not, how close are they?
 - Understanding complex text [eg. stories]

Conceptual Dependencies

- Expressiveness: All world knowledge?
- Not an intuitive means of communication, for us.

Links: What Do They Mean?

- IS-A
 - Clyde is-a elephant
 - Elephant is-a mammal
- The World Wide (Non-Semantic) Web
 - What does a hyperlink mean?
 - What does that mean?
 - Eg: books on the web
- Need to think about the semantics of the network notation, to minimize the "intuitive" meanings of links
 - Similarly to semantics in logic sense
 - Meaning arises from:
 - what the interpreter does (procedural semantics)
 - formal definitions

SI-Nets: Epistemologically Explicit

- Representational primitives with formal, logical meanings.
- Strict definitions of concepts: necessary and sufficient conditions, giving the essence of the concept's intension.
 - Some representations are concerned with the definition of terms - the "T-box"
 - Other representations use terminology to say what's true in the world at the moment - the "A-box"
 - A-box reasoning can use T-box reasoning as a fast subroutine for certain queries.

- Importance of subsumption: one concept as more general than a second concept.
 - Eg. Animal subsumes Dog.
 - Allows inheritance of definitional properties
 - Allows recognizing new concepts and instances as members of concepts.
 - Subsumption is the recommended inference.
- (In logical inference, the most general unifier is the key computation, here it's the most specific subsumer).
KL-ONE

- Logic-like notation:
 - Concepts: One place logical predicates: C(x).
 - Eg. Animal(x).
 - Subsumption links: C1 subsumes C2 if and only if for all X, C2(x) --> C1(x)
 - Eg. Dog(x) --> Animal(x).
 - Subsumption links create a taxonomy.

KL-ONE

- Distinction between individuals and generics
- Roles: Two place relations R(x,y).
 - Eg. Color(x,y)
 - Defined by domain and range; have their own taxonomy
- Role restrictions: consist of
 - Value Restrictions - the class of the role fillers for that concept
 - Number Restrictions - min. and max. number of instances filling the role.

Meaning in KL-One

- The meaning of a concept is either
 - A strict definition of necessary and sufficient conditions based on superclass[es], and role restrictions.
 - Or, a primitive: only necessary conditions.
 » Typically natural kinds [E.g. animal, water]

KL-ONE Network

- Triangle(x) <-> Polygon(x) AND Exists exactly 3 y s.t. Side(x, y) and Segment(y).

Classification

Place a new concept underneath the most specific generalizer.

Expressiveness in SI Nets

- Very few cases of people actually using SI net languages like KL-One to encode large knowledge bases.
- In general, there are problems from limited expressiveness:
 - Cannot clearly define many important concepts in a domain.
 » Consider defining a right triangle, or isosceles triangle.
 » Consider defining a chair or a dog.
- Issues of different "boxes" to put knowledge in:
 - TBox - Definitions, usually about classes.
 - ABox - "Assertions" - non-definitional properties of concepts and instances.
KL-One Descendants

- NIKL, KL-TWO, KRYPTON, KANDOR
- All Structured Inheritance Networks; same basic ontological commitment.
- Decisions made about:
 - Whether roles may also be in a definition hierarchy.
 - What expressions are allowed in TBox? In ABox?
 - Trading off the expressiveness of the language with efficiency of the classifier.

Where Field Is Today

- Still much focus on structured inheritance networks
- Much focus on computational details of well-known network formalisms.
- Claim: Need to return to basic investigations of real world knowledge for new ideas

Linguistically Motivated Networks

- The START NLP system (and some other earlier systems) use a triples representation
 - The link points to a relationship name and to the subject and object nodes.
 - Links may function as nodes
 - Relationship names and objects participate in inheritance relationships
- More complex relationships are decomposed into triples

Example

- John kissed Mary in the car

Example Diagram:

The Semantic Web

- Treat WWW Identifiers (URI’s) as nodes
- Create a repository of triples describing these nodes semantically.
 - Traditional Meta-Data such as author, creation-date
 - Non traditional meta-data such as summary or peer review
- Use this network to retrieve Web resources based on their semantics
 - W3C standards are being evolved for this purpose:
 - RDF (resource description format), XML syntax

Keyword Hell

- I need a tutorial on using arguments in Excel macros
Summary

- Semantic networks have evolved
 - Shift in motivation from modeling cognitive processes to addressing computational issues.
 - Shift in representation goals from "all human memory" to certain types of knowledge separately (e.g., definitions vs. assertions, classes vs. instances)
 - Semantics of links have become less intuitive and more formally defined.
 - Shift in reasoning mechanisms suited to more careful definitions of primitives.
 - Possible impact on WWW.