
6.869 Advances in Computer Vision: Learning and Interfaces 1

Problem Set 0
Assigned: 02/01/2005

Due: 02/10/2005

Introduction

This assignment is an introduction to MATLAB’s image processing tool-
box. It assumes that the reader is already acquainted with MATLAB and
has general knowledge of how images are represented and stored by com-
puter programs. In this section we provide a brief discussion of how images
are treated in MATLAB. In the following section we list a few problems that
will give you some experience using this toolbox. Those already familiar with
using images in MATLAB can go directly to the next section.

MATLAB stores images as an nD-array of dimensions h×w×d and class
uint8, where h, w, and d are the height, width, and channel count of the
image (grayscale images have one channel and color images have three). Im-
ages can be read and written using various image compression formats using
MATLAB’s imread and imwrite functions. Examples of popular, supported
image formats are JPEG, windows bitmap, TIFF, and PNG. Images are dis-
played in MATLAB using imshow. The function imagesc can also be used as
explained later. Below is an example snippet of MATLAB code that demon-
strates the use of the above functions. As seen below, this code reads a TIFF
image, displays it in a figure and then saves it in JPEG format with 75 per-
cent quality.

...

im = imread(‘myimage.tif’);

imshow(im);

imwrite(im, ‘myimage.jpg’, ‘JPG’, ‘Quality’, 75);

...

Arithmetic operators in MATLAB can only operate on data of class
double. Therefore images must be converted to double format prior to be-
ing manipulated in MATLAB when using functions or arithmetic operators
outside of the image processing toolbox (note some functions in the toolbox,
like hsv2rgb also require double format). Images can be converted to class
double using the function im2double. It is common that after processing
an image, its values no longer vary from 0 to 255. In fact, an image may be



6.869 Advances in Computer Vision: Learning and Interfaces 2

purposefully scaled such that its values vary in some pre-defined range (e.g.
between 0 and 1). Such images can be quickly visualized using imagesc,
which scales such image data to use the full colormap.

The image processing toolbox offers a rich set of functions for manipulat-
ing and processing images. All the functions included by your version of the
image toolbox can be viewed by typing ‘help images’ from the MATLAB
command prompt. The following problems will provide you experience with
using the toolbox. Over the course of the semester you will become familiar
with many of its functions.

Problems

1. Image correction for an image digitizer.

Load in and display the image original.tif. This is the (synthe-
sized) output from a hypothetical 35mm slide scanner. The slide to be
digitized is illuminated with a lamp and imaged onto a plane in space.
A 1-d detector array is moved through that image plane and records
the amount of light falling on each pixel as it scans through the im-
age. original.tif is the raw output of a scan. Each vertical column
represents the output of a single pixel of the detector. Each horizontal
row represents a different time step of the detector through the image.

Notice the vertical streaks through the image. These are because not
every element of the detector array has equal sensitivity to light. Since
the 1-d detector array sweeps through the image vertically, the less
sensitive array elements leave dark streaks through the image.

You remove the slide from the scanner, and record a calibration white
field image (whiteField.tif). This image shows the vertical streaks,
and also unevenness in the illumination of the slide area. Both these
multiplicative effects can be compensated for by dividing the slide im-
age by the white field image (point-by-point division, using ./, not the
matrix division operator, /). In other words, at every pixel position,
divide the intensity of each color of the original image by the inten-
sity of the white field image at that position. That will normalize for
the differences in sensitivity and illumination. Display the resulting
corrected image.

Solid-state detectors typically have a linear response to light intensity,
while monitor displays typically have a non-linear response, often mod-



6.869 Advances in Computer Vision: Learning and Interfaces 3

eled by an exponential non-linearity. Find a compensating nonlinearity
which leads to a pleasing tonescale for the displayed image by raising
each pixel to some power in the range of 0.3 to 0.5. Be aware of the
overall image scale.

2. CCD color interpolation.

To record color images with the single-chip CCD cameras typically used
in digital cameras, arrays of color filters are used. Each pixel is covered
by a filter of some color, giving a sample of only one color at each
spatial position on the detector (see slides in ccd.ppt). Digital cameras
need to reconstruct an image with 3 color samples at each position from
the recorded data of just one color sample per position. (The human
eye needs to do this, too.)

Here we will show one simple interpolation method, to practice image
array manipulations in matlab. Load in the 3-color image brettan.tif.

(a) Simulate the sampling by the CCD. Assume that the color filter
pattern is R, G, B stripes, in a repeating pattern. (i.e., producing an
array of [R G B R G B...; R G B R G B...; ...] by sampling one color
at corresponding position of the image.) Display a gray-scale image
showing the intensity of each pixel in the color band of the color filter
stripe that it lies under.

(b) Linear interpolation. Form a color image from the simulated data
of part (a) by linearly interpolating between nearby color samples in
the same row. For example, if the pixel at position (1,1) is a red sample,
then the red value at position (1,2) should be

Î(1, 2) =
2

3
I(1, 1) +

1

3
I(1, 4)

where I is the array of sampled intensities from (a). Display the result-
ing full-color picture. You should be able to see color fringe artifacts
in the picture. (Refer to ccd.ppt for the artifact.)

(c) The undersampling causes color fringe artifacts. To reduce those,
the image can be optically blurred before falling on the CCD. Load in
the blurred image, brettanBlurred.tif, and perform the same steps
as in (a) and (b). Are the color fringes reduced? At what price? Later
in the term, we will discuss a non-linear color sample interpolation



6.869 Advances in Computer Vision: Learning and Interfaces 4

method that requires much less image blurring in order to remove color
fringe artifacts.

3. Object metamorphosis.

Object metamorphosis is an important phenomena in nature. The
ability to morph between images of an object or multiple objects is a
useful tool in both vision and graphics. Below we will explore some
of MATLAB’s image interpolation capabilities with an example image
morph.

The images neutral.jpg and smile.jpg depict an actor with a neutral
and smiling facial expression. The files flowNS.mat and flowSN.mat

are 2-D optical flow fields, which map the location of each pixel in one
image to a corresponding pixel in the other (flowNS.mat is a flow field
from neutral to smiling and flowSN.mat is from smiling to neutral).
Below we synthesize a smooth transition from neutral to smiling using
image morphing. There are two basic steps to image morphing: (1)
each image is aligned to have the same shape, (2) the aligned images
are blended to form the morphed image. The first step, known as image
warping, is performed as follows,

Iw(x, y) = I(x + dx, y + dy)

where Iw is the warped image, I is the input image, and (dx, dy) is
the optical flow vector at location (x, y) of the other input image (this
is referred to as reverse warping). The shape of one image can be
transitioned to that of the other by moving along the defined flow
vectors. For example, each image can be warped to their midpoint
combined shape by moving 0.5 along each flow field. The blended
images form an image that is often referred to as the average image.
Using MATLAB’s interp2 function and the provided flow fields, warp
each image to the average shape by first multiplying each flow field
by 0.5 and then warping each image using their respective flow fields.
Make sure to avoid or remove any NaN’s introduced by interp2.

A smooth transition between images is generated using a blending pa-
rameter α, where 0 ≤ α ≤ 1. Given two input images I1 and I2 we
morph them to an intermediate transition step α as follows,



6.869 Advances in Computer Vision: Learning and Interfaces 5

I1
w(x, y) = I1(x + αdx, y + αdy)

I2
w(x, y) = I2(x + (1− α)dx, y + (1− α)dy)

Im(x, y) = (1− α)I1
w(x, y) + αI2

w(x, y)

where Im is the morphed image. Compute and display the average im-
age. Compute a smooth transition between the two images by varying
α on the interval (0, 1] in 0.1 increments. Display each transition step
in a 2× 5 subplot.

4. Simple background subtraction using white screening.

In this problem we explore a simple, useful tool in the movie special
effects industry known as white screening. We will spice up the results
from the previous problem by adding an original background to the
morph sequence. In doing this problem you will gain some experience
in performing simple image filtering and morphological operations in
MATLAB.

The input images from the previous problem exhibit a whitish back-
ground. Ideally we would like the background to be a solid color (not
present on the actor) that we could use to identify it. Unfortunately,
the background wall exhibits various texture and lighting effects. Ad-
ditionally there is noise in the image formation process which makes
it almost impossible to capture a solid color in the background. To
remove the background, we will therefore assume that the range of col-
ors present all lie within a 3-D Gaussian in the RGB color space. To
compute the mean and covariance of this Gaussian, select two points
in the upper-left corner of either image that outline a large rectangular
region of the background using MATLAB’s ginput function. Compute
the mean and covariance of the pixels in the selected rectangular region.

To distinguish points that are within the support of the multivariate
Gaussian we will use the Mahalanobis distance,

d = (x− µx)
TC−1(x− µx)

where µx, C are the mean and covariance of the Gaussian and x is a
pixel in the image. Background subtract each image by computing the
Mahalanobis distance for each pixel, discarding pixels whose distance



6.869 Advances in Computer Vision: Learning and Interfaces 6

is under some threshold. Adjust the threshold as you see fit, until the
background is properly segmented. We found a threshold of 200 to
suffice. Mark the background with black (i.e. (0, 0, 0)) in each image.
Try not to use for loops as this will make the routine quite slow in
MATLAB.

To cleanup your background segmentation result, first use a median
filter to remove spurious pixels from your background (if any). You
can do this using MATLAB’s medfilt2 function. After background
subtraction you will notice an annoying white silloette around the actor.
Remove it by using MATLAB’s imerode function. We found a line

structured element with length 11 and a 90 degree orientation to work
well.

Next, we will generate a small video sequence with the processed im-
ages: As in the previous problem, compute a transition between each
of the background segmented images. Replace the background in each
image with the image beach.jpg. (Hint: You can do this by computing
image masks.) Finally, composite all the images into a movie sequence
using images2movie and display it with showmovie. These routines
are included with this problem set and are available from the course
website.


