Course Calendar

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Description</th>
<th>Readings</th>
<th>Assignments</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/1</td>
<td>Course Introduction Cameras and Lenses</td>
<td>Req: FP 1.1, 2.1, 2.2, 2.3, 3.1, 3.2</td>
<td>PS0 out</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2/3</td>
<td>Image Filtering</td>
<td>Req: FP 7.1 - 7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2/8</td>
<td>Image Representations: Pyramids</td>
<td>Req: FP 7.7, 9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/10</td>
<td>Image Statistics</td>
<td></td>
<td>PS0 due</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2/15</td>
<td>Texture</td>
<td>Req: FP 9.1, 9.3, 9.4</td>
<td>PS1 out</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2/17</td>
<td>Color</td>
<td>Req: FP 6.1-6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2/22</td>
<td>Guest Lecture: Context in vision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2/24</td>
<td>Guest Lecture: Medical Imaging</td>
<td></td>
<td>PS1 due</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3/1</td>
<td>Multiview Geometry</td>
<td>Req: Mikolajczyk and Schmid; FP 10</td>
<td></td>
<td>PS2 out</td>
</tr>
<tr>
<td>10</td>
<td>3/3</td>
<td>Local Features</td>
<td>Req: Shi and Tomasi; Lowe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Calendar

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Date</th>
<th>Description</th>
<th>Readings</th>
<th>Assignments</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/8</td>
<td>Image Representations:</td>
<td>Req. FP 7.7, 9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pyramids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2/10</td>
<td>Image Statistics</td>
<td></td>
<td></td>
<td>PSO due</td>
</tr>
</tbody>
</table>
Reading

• Related to today’s lecture:
 – Adelson article on pyramid representations, posted on web site.
 – Farid paper posted on web site.
Image pyramids

- Gaussian
- Laplacian
- Wavelet/QMF
- Steerable pyramid
Steerable pyramids

• Good:
 – Oriented subbands
 – Non-aliased subbands
 – Steerable filters

• Bad:
 – Overcomplete
 – Have one high frequency residual subband, required in order to form a circular region of analysis in frequency from a square region of support in frequency.
Oriented pyramids

- Laplacian pyramid is orientation independent
- Apply an oriented filter to determine orientations at each layer
 - by clever filter design, we can simplify synthesis
 - this represents image information at a particular scale and orientation
<table>
<thead>
<tr>
<th></th>
<th>Laplacian Pyramid</th>
<th>Dyadic QMF/Wavelet</th>
<th>Steerable Pyramid</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-inverting (tight frame)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>overcompleteness</td>
<td>4/3</td>
<td>1</td>
<td>4k/3</td>
</tr>
<tr>
<td>aliasing in subbands</td>
<td>perhaps</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>rotated orientation bands</td>
<td>no</td>
<td>only on hex lattice [9]</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table 1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.
But we need to get rid of the corner regions before starting the recursive circular filtering.

Figure 1. Idealized illustration of the spectral decomposition performed by a steerable pyramid with $k = 4$. Frequency axes range from $-\pi$ to π. The basis functions are related by translations, dilations and *rotations* (except for the initial highpass subband and the final lowpass subband). For example, the shaded region corresponds to the spectral support of a single (vertically-oriented) subband.

Simoncelli and Freeman, ICIP 1995

http://www.cns.nyu.edu/ftp/eero/simoncelli95b.pdf
• Summary of pyramid representations
Image pyramids

- **Gaussian**
 - Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding.
 - Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms.

- **Laplacian**
 - Bandpassed representation, complete, but with aliasing and some non-oriented subbands.

- **Wavelet/QMF**
 - Shows components at each scale and orientation separately. Non-aliased subbands. Good for texture and feature analysis.

- **Steerable pyramid**
Linear image transformations

• In analyzing images, it’s often useful to make a change of basis.

\[\widetilde{F} = U \widetilde{f} \]

transformed image

Vectorized image

Fourier transform, or
Wavelet transform, or
Steerable pyramid transform
Schematic pictures of each matrix transform

- Shown for 1-d images
- The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships.
Fourier transform

\[
\text{Fourier transform} = \text{ Fourier bases are global: each transform coefficient depends on all pixel locations.} \quad \ast \quad \text{pixel domain image}
\]
Gaussian pyramid

\[\text{Gaussian pyramid} \quad = \quad \ast \quad \text{pixel image} \]

Overcomplete representation.
Low-pass filters, sampled appropriately for their blur.
Laplacian pyramid

Overcomplete representation. Transformed pixels represent bandpassed image information.
Wavelet (QMF) transform

Wavelet pyramid

Ortho-normal transform (like Fourier transform), but with localized basis functions.

pixel image
Steerable pyramid

Over-complete representation, but non-aliased subbands.

Pixel image

Multiple orientations at one scale

Multiple orientations at the next scale

the next scale…
Matlab resources for pyramids (with tutorial)
http://www.cns.nyu.edu/~eero/software.html

Publicly Available Software Packages

- **Texture Analysis/Synthesis** - Matlab code is available for analyzing and synthesizing visual textures. README | Contents | ChangeLog | Source code (UNIX/PC, gzip'd tar file)
- **matlabPyrTools** - Matlab source code for multi-scale image processing. Includes tools for building and manipulating Laplacian pyramids, QMF/Wavelets, and steerable pyramids. Data structures are compatible with the Matlab wavelet toolbox, but the convolution code (in C) is faster and has many boundary-handling options. README, Contents, Modification list, UNIX/PC source or Macintosh source.
- **The Steerable Pyramid**, an (approximately) translation- and rotation-invariant multi-scale image decomposition. Matlab (see above) and C implementations are available.
- **Computational Models of cortical neurons**. Macintosh program available.
- **EPIC** - Efficient Pyramid (Wavelet) Image Coder. C source code available.
Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features
An application of image pyramids: noise removal
Image statistics (or, mathematically, how can you tell image from noise?)
Pixel representation
image histogram
bandpass filtered image
bandpassed representation
image histogram
Pixel domain noise image and histogram
Bandpass domain noise image and histogram
Noise-corrupted full-freq and bandpass images
Bayes theorem

\[P(x, y) = P(x|y) \, P(y) \]
so
\[P(x|y) \, P(y) = P(y|x) \, P(x) \]
and
\[P(x|y) = \frac{P(y|x) \, P(x)}{P(y)} \]

The parameters you want to estimate
What you observe
Likelihood function
Prior probability
Constant w.r.t. parameters x.
Bayesian MAP estimator for clean bandpass coefficient values

Let \(x \) = bandpassed image value before adding noise. Let \(y \) = noise-corrupted observation.

By Bayes theorem

\[
P(x|y) = k \frac{P(y|x) P(x)}{P(y)}
\]

\(P(x) \)

\(P(y|x) \)

\(P(x|y) \)
Bayesian MAP estimator

Let $x =$ bandpassed image value before adding noise.
Let $y =$ noise-corrupted observation.

By Bayes theorem

$$P(x|y) = k \ P(y|x) \ P(x)$$

$$P(x)$$

$$P(y|x)$$

$$P(x|y)$$
Bayesian MAP estimator

Let $x =$ bandpassed image value before adding noise.
Let $y =$ noise-corrupted observation.

By Bayes theorem

$$P(x|y) = k P(y|x) P(x)$$

$$P(x)$$

$$P(y|x)$$

$$P(x|y)$$
MAP estimate, \hat{x}, as function of observed coefficient value, y

Figure 2: Bayesian estimator (symmetrized) for the signal and noise histograms shown in figure 1. Superimposed on the plot is a straight line indicating the identity function.

Simoncelli and Adelson, Noise Removal via Bayesian Wavelet Coring
Figure 4: Noise reduction example. (a) Original image (cropped). (b) Image contaminated with additive Gaussian white noise (SNR = 9.00dB). (c) Image restored using (semi-blind) Wiener filter (SNR = 11.88dB). (d) Image restored using (semi-blind) Bayesian estimator (SNR = 13.82dB). Simoncelli and Adelson, Noise Removal via Bayesian Wavelet Coring.

[Link to Simoncelli noise removal paper]
Insert hany farid slides
Non-linear filtering example
Median filter

Replace each pixel by the median over N pixels (5 pixels, for these examples).
Generalizes to “rank order” filters.

In:

\[
\begin{array}{c}
\text{5-pixel neighborhood}
\end{array}
\]

Out:

\[
\begin{array}{c}
\text{Spike noise is removed}
\end{array}
\]

In:

\[
\begin{array}{c}
\text{Monotonic edges remain unchanged}
\end{array}
\]

Out:
Degraded image
Radius 1 median filter
Radius 2 median filter
CCD color sampling
Color sensing, 3 approaches

• Scan 3 times (temporal multiplexing)
• Use 3 detectors (3-ccd camera, and color film)
• Use offset color samples (spatial multiplexing)
Typical errors in temporal multiplexing approach

- Color offset fringes
Typical errors in spatial multiplexing approach.

• Color fringes.
CCD color filter pattern

detector
The cause of color moire

Fine black and white detail in image mis-interpreted as color information.
Black and white edge falling on color CCD detector

Black and white image (edge)

Detector pixel colors
Color sampling artifact

Interpolated pixel colors, for grey edge falling on colored detectors (linear interpolation).
Typical color moire patterns

Blow-up of electronic camera image. Notice spurious colors in the regions of fine detail in the plants.
Color sampling artifacts
Human Photoreceptors

3.4 THE SPATIAL MOSAIC OF THE HUMAN CONES. Cross sections of the human retina at the level of the inner segments showing (A) cones in the fovea, and (B) cones in the periphery. Note the size difference (scale bar = 10 μm), and that, as the separation between cones grows, the rod receptors fill in the spaces. (C) Cone density plotted as a function of distance from the center of the fovea for seven human retinas; cone density decreases with distance from the fovea. Source: Curcio et al., 1990.

(From Foundations of Vision, by Brian Wandell, Sinauer Assoc.)
Brewster’s colors example (subtle).

Scale relative to human photoreceptor size: each line covers about 7 photoreceptors.
Median Filter Interpolation

- Perform first interpolation on isolated color channels.
- Compute color difference signals.
- Median filter the color difference signal.
- Reconstruct the 3-color image.
Two-color sampling of BW edge

Sampled data

Linear interpolation

Color difference signal

Median filtered color difference signal
R-G, after linear interpolation
R – G, median filtered (5x5)
Recombining the median filtered colors

Linear interpolation Median filter interpolation