Perceptive Context for Pervasive Computing

Trevor Darrell Vision Interface Group MIT AI Lab

Perceptually Aware Displays Camera associated with display Display should respond to user - font size - attentional load - passive acknowledgement

e.g., "Magic Mirror", Interval Compaq's Smart Kiosk ALIVE, MIT Media Lab

Example: A Face Responsive Display

- Faces are natural interfaces!
 - Ubiquitous, fast, expressive, general.
 - Want machines to generate and perceive faces.
- A Face Responsive Display...
 - Knows when it's being observed
 - Recognizes returning observers
 - Tracks head pose
 - Robust to changing lighting, moving backgrounds...

A Face Responsive Display

Tasks

- Detection
- Identification
- Tracking
- How? Exploit multiple visual modalities:
 - Shape
 - ColorPattern

Tasks and Visual Modalities shape color pattern silhouette detection skin classifier face detection classifier identification biometrics flesh hue face recognition fine motion coarse motion clothing tracking estimation / pose estimation histogram tracking

Flesh color tracking

- Often the simplest, fastest face detector!
- Initialize region of hue space

[Crowley, Coutaz, Berard, INRIA]

Color Processing

- Train two-class classifier with examples of skin and not skin
- Typical approaches: Gaussian, Neural Net, Nearest Neighbor
- Use features invariant to intensity Log color-opponent [Fleck et al.] (log(r) - log(g), log(b) - log((r+g)/2))
 Hue & Saturation

Flesh color tracking Can use Intel OpenCV lib's CAMSHIFT algorithm for robust real-time tracking. (open source impl. avail.!)

[Bradsky, Intel]

A Key Technology: Video-Rate Stereo

- Two cameras -> stereo range estimation; disparity proportional to depth
- Depth makes tracking people easy
 - segmentation
 - shape characterization
 - pose tracking
- Real-time implementations becoming commercially available.

RGBZ input

RGBZ input

Classic Background Subtraction model

- · Background is assumed to be mostly static
- Each pixel is modeled as by a gaussian distribution in YUV space
- Model mean is usually updated using a recursive lowpass filter

Given new image, generate silhouette by marking those pixels that are significantly different from the "background" value.

