Segmentation and low-level grouping.

Bill Freeman, MIT

6.869 April 14, 2005

Readings: Mean shift paper and background
segmentation paper.

* Mean shift IEEE PAMI paper by Comanici and

« Wallflower: Principles and Practice of
Background Maintenance, by Kentaro Toyama,
John Krumm, Barry Brumitt, Brian Meyers.

The generic, unavoidable problem with
low-level segmentation and grouping

« It makes a hard decision too soon. We want to
think that simple low-level processing can
identify high-level object boundaries, but any
implementation reveals special cases where
the low-level information is ambiguous.

« So we should learn the low-level grouping
algorithms, but maintain ambiguity and pass
along a selection of candidate groupings to
higher processing levels.

Segmentation methods

» Segment foreground from background
» K-means clustering

» Mean-shift segmentation

Normalized cuts

A simple segmentation technique:
Background Subtraction

* If we know what the « Approach:

background looks like, — use a moving average
it is easy to identify to estimate background
“interesting bits” Image

« Applications - :;Jat;]tqrsct from current
— Person in an office

. - large absolute values

— Tracking cars on a road are interesting pixels
— surveillance « trick: use morphological

operations to clean up
pixels

Movie frames from which we want to extract the foreground subject
(the textbook author’s child)




2 different background removal models
Background estimate Foreground estimate Foreground estimate

Average over frames

Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]

Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]

Static Background Modeling
Examples

[MIT Media Lab Pfinder / ALIVE System]

Dynamic Background

BG Pixel distribution is non-stationary:

[MIT Al Lab VSAM]

Mixture of Gaussian BG model

Staufer and Grimson tracker:
Fit per-pixel mixture model to observed distrubution.

[MIT Al Lab VSAM]
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Background Subtraction Principles

Wallflower: Principles and Practice of Background Maintenance, by Kentaro
Toyama, John Krumm, Barry Brumitt, Brian Meyers.

Semantic differentiation of objects should not be

PL) handled by the background maintenance module.
P2 Background subtraction should segment objects

of interest when they first appear (or reappear) in
a scene.

P3:| An appropriate pixel-level stationarity criterion
should be defined. Pixels that satisfy this criterion
are declared background and ignored.

P4:| The background model must adapt to both sudden
and gradual changes in the background.
P5:| Background meodels should take into account

changes at differing spatial scales.

Background Technlques Compared
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Segmentation as clustering

« Cluster together (pixels, tokens, etc.) that belong
together...
« Agglomerative clustering
— attach closest to cluster it is closest to
— repeat
« Divisive clustering
— split cluster along best boundary
- repeat
« Dendrograms
— vyield a picture of output as clustering process continues

[From the Wallflower Paper
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Greedy Clustering Algorithms

Algorithm 15.3: Aggomartes

Algorithm 154 Do
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Data set Dendrogram formed by

agglomerative clustering
using single-link
clustering.

Segmentation methods

» K-means clustering

K-Means

¢ Choose a fixed number of ~ + Algorithm
clusters — fix cluster centers; allocate
points to closest cluster
— fix allocation; compute best

« Choose cluster centers and cluster centers
pmoilnnitr;]ciIZL;sgerrr:rllocatlons o, x could be any set of
I features for which we can
 can’tdo this b#/ search, compute a distance
because there are too (careful about scaling)

many possible allocations.

2
> )y [%; = s
ieclusters | j eelements of i'th cluster

K-Means

Algorithm 15.5: Clustering by K-Means

Choose k data points to act as cluster centers
TIntil the cluster centers are unchanged
Allocate each data point to cluster whose center is nearest
Mow ensure thal every cluster has at least
one dala point; possible techniques for doing this include |
supplying empty clusters with a point chosen at randem from
points far from their cluster center.
Replace the cluster centers with the mean of the elements
in their clusters,
end

Matlab k-means clustering demo

Image Clusters on intensity (K=5) Clusters on color (K=5)

K-means clustering using intensity alone and color alone




Image Clusters on color

K-means using color alone, 11 segments

K-means using
color alone,
11 segments.

Color alone
often will not
yeild salient segments!

Ways to include spatial relationships

(a) Define a Markov Random Field (MRF),
where the state to be estimated includes the
segment index. Solve by graph cuts or BP.

(b) Augment data to be clustered with spatial
coordinates. Yo

Fcolor coordinates
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X . .
spatial coordinates

y

K-means using colour and
position, 20 segments

Still misses goal of perceptually
pleasing segmentation!

Hard to pick K...

Segmentation methods

» Mean-shift segmentation

Mean Shift Segmentation

Segmented " Tandseape 17 Segmented "landscape 17

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html




Mean Shift Algorithm

Mean Shift Algorithm

. Choose a search window size.

. Choose the initial location of the search window.

. Compute the mean location (centroid of the data) in the search window.
. Center the search window at the mean location computed in Step 3.

. Repeat Steps 3 and 4 until convergence.

O wWN R

The mean shift algorithm seeks the “mode” or point of highest density of a data distribution:

Mean Shift Segmentation

Mean Shift Segmentation Algorithm

. Convert the image into tokens (via color, gradients, texture measures etc).
. Choose initial search window locations uniformly in the data.

. Compute the mean shift window location for each initial position.

. Merge windows that end up on the same “peak” or mode.

. The data these merged windows traversed are clustered together.
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*Image From: Dorin Comaniciu and Peter Meer, Distribution Free Decomposition of Mulivariate

Data, Pattern Analysis & Applications (1999)2:22-30

* For your homework, you will do a mean
shift algorithm just in the color domain. In
the slides that follow, however, both spatial
and color information are used in a mean
shift segmentation.

Figd : bl b ey bovel dati. (8] Irpud, &) Dol tox Dha plks
on 11w B, Tho black dots painls of ) Fitosing (hehe )= (3,40, 1) Sagr

Comaniciu and Meer, IEEE PAMI vol. 24, no. 5, 2002

Window in image domain - Apply mean shift jointly in the image
: (left col.) and range (right col.) domains

Intensities of pixels within
imaﬁe dumi'n ﬁigdow @
Center of mass of pixels within

both image and range domain
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i Window in
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Center of mass of pixels within
both image and range domain

windows
T (6)
7

0 1

——=kR—
]

D

Mean Shift color&spatial Segmentation Results:

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html




Mean Shift color&spatial Segmentation Results:

Origmal "fagaras™ Segmented
L] L)

Segmentation methods

* Normalized cuts

Graph-Theoretic Image Segmentation

Build a weighted graph G=(V,E) from image
V:image pixels

E: connections between
pairs of nearby pixels

Graphs Representations

. 01001
b 10000

.0 00001
e 00001
10110

Adjacency Matrix

~ From Khurram Hassan Shafique CAP5415 Computer Vision 2003 |

Weighted Graphs and Their

Representations
01 3 o »
104 o2
3406 7
o o 6 0 1
© 2710
d 5 Weight Matrix

+ From Khurram Hassan-Shafigue CAP5415 Computer Vision 2003

Boundaries of image regions defined
by a number of attributes

— Brightness/color

— Texture

— Motion

— Stereoscopic depth

— Familiar configuration

[Malik]




Measuring Affinity
Intensity

aty)=exp| | 5, (100-100")
Distance

aff(x,y):exp{—( Zgg)Q\X—YHZ)}
Color

attGuy)=exp|-{ %3, )(-c)

Eigenvectors and affinity clusters

* Simplest i_de_a: wewanta e This is an eigenvalue
vector a giving the problem (p. 321 of

association between each Forsyth&Ponce)
element and a cluster
¢ -choose the

» We want elements within ) .
this cluster to, on the eigenvector of A with

whole, have strong affinity largest eigenvalue
with one another

« We could maximize
a'Aa
» But need the constraint

a'a=1

Example eigenvector
. points

eigenvector

matrix

Example eigenvector
. points

eigenvector

matrix

Some Terminology for Graph
Partitioning
« How do we bipartition a graph:

Cut(A,B)= Y W(u,v), assoc(A,A) = Y W(u,v)
ueAveB TRy

Aand A'not necessarily disjoint




Minimum Cut

A cut of a graph G is the set of
edges S such that removal of
S from G disconnects G.

Minimum cut is the cut of
minimum weight, where
weight of cut <A,B> is given
as

W(AB)=3" , wxy)

* From Khurram Hassan-Shafigue CAP5415 Computer Vision 2003

Minimum Cut and Clustering

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Drawbacks of Minimum Cut

» Weight of cut is directly proportional to the
number of edges in the cut.

o0 |0 o
Cuts with
() /

o
oo lesser weight
(NN than the

@
o \0 ideal cut

Ideal Cut

- Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Normalized cuts

« First eigenvector of affinity *  Minimize
matrix captures within cluster Ccut(A,B) Ccut(A,B)
similarity, but not across cluster
difference assoc(A,V)  assoc(B,V)
* Min-cut can find degenerate where cut(A,B) is sum of weights
clusters with one end in A and one end
« Instead, we’d like to maximize in B; assoc(A,V) is sum of all

edges with one end in A.

compared to the across cluster € construct A, B such that their
difference within cluster similarity is high
R compared to their association
« Write graph as V, one cluster as with the rest of the graph
A and the other as B

the within cluster similarity

Solving the Normalized Cut problem

« Exact discrete solution to Ncut is NP-complete
even on regular grid,
— [Papadimitriou’97]

« Drawing on spectral graph theory, good
approximation can be obtained by solving a
generalized eigenvalue problem.

[Malik]

Normalized Cut As Generalized
Eigenvalue problem

_CU(AB) , cu(AB) Di=>A
asso¢A,V) asso¢B,V) i
@) @-WAH) (-9 W9 | 2,000
T Dot ko T YD)

NCUtA B)=

after simplification, Shi and Malik derive
T p—
Ncut(A Bﬁ%, withy, e{L £}, y" DL=0,

[Malik]




Normalized cuts

« Instead, solve the generalized eigenvalue problem
max,(y' (D —W )y) subject to (y' Dy =1)
« which gives
(D-W)y =Dy

« They show that the 2"@ smallest eigenvector solution y is a good real-
valued appox to the original normalized cuts problem. Then you look for
a quantization threshold that maximizes the criterion --- i.e all
components of y above that threshold go to one, all below go to -b

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Brightness Image Segmentation

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Results on color segmentation

Lhitn-//www.cs berkeley edi/~malik/papers/SM-ncut.ndf

Nice web page on grouping from Malik’s group.
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Berkeley

£ Color Segmentations

gmentation Dataset: Test Image #101085 [color]

Contains a large
dataset of images
with human
“ground truth”
labeling.
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Of course, the
human labelings
differ one from
another.

Line Fitting

Hough transform
Iterative fitting

Fitting

» Choose a parametric
object/some objects to
represent a set of tokens

e Most interesting case is
when criterion is not local
- can’t tell whether a set of
points lies on a line by
looking only at each point
and the next.

« Three main questions:
— what object represents this
set of tokens best?
— which of several objects
gets which token?
— how many objects are
there?

(you could read line for object
here, or circle, or ellipse
or...)

Fitting and the Hough Transform

Purports to answer all three .
questions
— in practice, answer isn’t .
usually all that much help
We do for lines only
A line is the set of points (x, y)
such that

(sin@)x +(cos@y+d =0 .

Different choices of 6, d>0 give
different lines

For any (x, y) there is a one
parameter family of lines
through this point, given by

(sin@)x +(cosP)y+d =0
Each point gets to vote for each
line in the family; if there is a
line that has lots of votes, that
should be the line passing
through the points

tokens

0

Votes for parameter values

satisfying (sin@)x +(cos@)y +d =0

at each token

11



Mechanics of the Hough transform

¢ Construct an array ¢ How many lines?
representing 6, d — count the peaks in the
« For each point, render the Hough array
curve (6, d) into this array, * Who belongs to which

adding one at each cell line?
+ Difficulties - tag the votes
— how big should the cells be? . .
(too big, and we cannot ¢ Problems with noise and
distinguish between quite cell size can defeat it

different lines; too small,
and noise causes lines to be
missed)

tokens votes
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Noise level

Maximum number of votes

£ a0 [ 7] i un wa ww [ B

Number of noise points

Rules of thumb for getting Hough
transform to work well

 Can work for finding lines in a set of edge
points.

 Ensure minimum number of irrelevant
tokens by tuning the edge detector.

» Choose the quantization grid carefully by
trial and error.
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Line fitting

What criteria to optimize when fitting a line to
a set of points?

“Least Squares” )
o 7
Y
Line fitting can be max. ’_/" N
likelihood - but choice of ‘ N
model is important /,--" N

“Total Least Squares

Who came from which line?

» Assume we know how many lines there are
- but which lines are they?
— easy, if we know who came from which line

* Three strategies
— Incremental line fitting
— K-means (described in book)
— Probabilistic (in book, and in earlier lecture
notes)

Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are t
Transfer first fo
Fit line to line point list
While firted line iz good enough
Transfer the nex ut on the curve
to the line point list and refit the line

few poiuts on the curve
points on the curve to the line point list

cened
Transfer last point(s) back to curve
Refit line
Attach line to line list
end

Incremental line fitting

Incremental line fitting

13



Incremental line fitting

Incremental line fitting

Incremental line fitting

Fitting contours

» Two common techniques:
— Snakes (Terzopolous, Witkin, and Kass)
— Dynamic programming methods

http://Awww.cs.huji.ac.il/~shashua/papers/saliency.pdf

6.3.2  Saliency

http://people.csail.mit.edu/people/billf/freemanThesis.pdf
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lenlation is as follows:

The recursive s

g0 o (#

g a4+ max[5" £, (6.1)

v of the ith orientation element after the kth iteration, o; is the

local saliency of the ith element, and f; = a coupling anl between the ith and

1 orientation elements. The maximization is taken over all n

The «

ghhoring orientat

elements, j

nds of the curve and ¢

uplin wtant penalizes sharg

imposes a prior distribution on the expected shapes of the image contours. Shaashua

and Ullman showed that after & iterations, the alove thin will find the salicney

of the most salient curve of length v originating from cach contour.

http://people.csail.mit.edu/people/billf/freemanThesis. pdf

http://people.csail.mit.edu/people/billf/freemanThesis.pdf

s crn varvely “poye

~shashua/papers/saliency.pdf

http://www.cs.huji.a
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