
XDB§: On Mitigating Frontrunning attacks in Ethereum

Daniel Xu
danielxu@mit.edu

YeonHwan Park
parky@mit.edu

Xinyu Lin
linx3@mit.edu

Abstract— The advent of new decentralized exchanges
and applications to trade cryptocurrencies has abstracted
away the technical knowledge the average user needs to
know in order to trade different coins. Although this
means that the average user will most likely never learn
the technical underpinnings of the technology they are
using, it does not mean that malicious adversaries will
not. Aimed to decentralize markets and crown trans-
parency in order to attract users, any cryptocurrencies
have open-sourced their codebases and publicized their
whitepapers. In this paper, we evaluate the structure of a
popular cryptocurrency based on the popular blockchain
technology, its security vulnerabilities, and how such
a network might mitigate attacks against the users
interacting with the network.

1. Introduction

In October of 2008, an author by the pseudonym
Satoshi Nakamoto published ”Bitcoin: A Peer-to-
Peer Electronic Cash System” [15] anonymously
on a public mailing list dedicated to conversations
about cryptography. Since then, the the concept of
a blockchain has been has gained major traction
in the research community and more than 18,465
new currencies have been created, along with thou-
sands of exchanges aimed help users trade such
assets. Decentralized exchanges, also known as
DEXs, have abstracted away the technical know-
how required from users and have enabled the
general public to invest into a variety of different
coins. While it is nowhere near necessary for the
average user to be familiar with the inner technical
workings of a cryptocurrency, this has meant that
decentralized exchnages and cryptocurrencies have
become the target for many malicious actors look-
ing to take advantage of such users. By looking at

0Short for ”Xinyu, Daniel, and Brian” - note that we did not
contribute any novel ideas to the field. We did, however, think it
would be cool to title our paper this way.

open-sourced code and whitepapers published on-
line, adversaries can easily exploit vulnerabilities
in variety of networks.

In particular, we look at the technical structure
of the Ethereum network and an a popular attack
known as ”frontrunning” user transactions. Fron-
trunning is a type of attack on any centralized or
decentralized exchange where a malicious actor
uses insider knowledge that others don’t have to
take advantage of potential trades and capitalize on
the market [18]. While frontrunning is generally
frowned upon and considered illicit in ”normal”
markets such as the stock exchange, it is legal in
the cryptocurrency exchanges. This is because all
of the knowledge for most given cryptocurrencies
are public (a common mantra in the blockchain
community is: ”Don’t trust, verify.” This implies
that anyone with sufficient technical knowledge
should be able to reconstruct the entire protocol).
While the knowledge known by adversaries in
this model is not necessarily insider information
because it is publicly available, most people who
purchase and sell such currenices do not bother
to learn the intricacies or implications of the tech-
nologies behind the cryptocurrencies, making them
easy targets of such attacks.

2. Background

In order to understand the high-level frontrun-
ning attacks on the users of the Ethereum network,
we first dive into a brief overview of the intricacies
behind the technology powering Ethereum known
as the Blockchain, and then dive deeper into how
different pieces are tied together.



2.1. Ethereum Overview
Launched in July of 2015 [8], Ethereum is a de-

centralized cryptocurrency based on the blockchain
technology and has the second highest number of
trades amongst different cryptocurrencies. Simi-
larly to other popularized cryptocurrencies, it runs
on blockchain technology and runs a proof of work
model [8].

It is mostly similar to the popularized cryptocur-
rency Bitcoin as it uses a proof-of-work model [8]
and is distributed and decentralized by blockchain
technology [8]. However, it diverges from Bitcoin
by presenting a new feature known as ”smart
contracts” [8] – in addition to a ledger functionality
allowing users to trade Bitcoins, it also provides a
decentralized way for users to run decentralized
applications (also called dApps).

2.1.1. Blockchain
A blockchain is a type of linear datastructure

similar in nature to a singly linked list [15]. In this
analogy, each node is called a ”block,” and each
pointer is a specialized link between blocks called
”chains.” The basic idea behind a blockchain is to
connect a series of unchangeable nodes with self-
verifiable pointers to provide an immutable, dis-
tributed, and decentralized datastructure with high
levels of transparency. Given an established chain
of blocks, any change in the datastructure should
be easily observable. Given the full blockchain,
any user should be able to connect a new set
of nodes to extend the blockchain. Finally, there
should be a generalized consensus algorithm to
ensure that there is only one official version of the
blockchain at any given time even as many differ-
ent users may hold their own localized copies.

Fig. 1. Ethereum client diagram [8]

Many cryptocurrencies are built with the
blockchain as their underlying architecture, and
Ethereum is one example of such a network [8].
Ethereum uses its blocks to store verified transac-
tions and chains the blocks together with an algo-
rithm known as a ”Proof of Work,” also referenced
as POW.

Proof of Work is one of many immutable
and decentralized consensus schemes that can be
used to power blockchain protocols. The overall
simplified idea can be illustrated as follows:

1) The Ethereum network sets some small 256-
bit value x.

2) Different clients gather transactions to pack-
age into the nth block of the blockchain.
Blocks consist of many transactions.

3) Clients compute many different hash values
Y = (y1, ...yn) until one finds a hash value
yi that is smaller than x. This client now has
a ”proof of work” that validates them to add
the hash to the blockchain.

It is easy to see how setting x to be a small
number such as a 256 bit number with 50 leading
zeroes will make it difficult for any particular
client to guess a valid number to ”prove their
work.” There is 1

250
chance of actually finding

a solution in this case! The Ethereum network
adjusts the value of x depending on the load on the
network to ensure that transactions are processed
at a predictable and steady rate.

In order to ensure that the blockchain as a whole
is truly immutable, the hash of the previous block
is added into the header of the next block [8].
While hashing the transactions themselves ensure
that they stay in order (for instance, with a nonce
– a counter that increments transaction orders),
including the hash of the previous block into the
next block ensures that the order of the blocks
themselves are preserved. This is critical as it
ensures that the state machine 3 keeping track
of accounts and transactions stays up to date and
malicious actors cannot reorder operations to incur
an invalid state (e.g. Double Spend).

2.2. Ethereum Network
Ethereum maintains a distributed and decentral-

ized state machine on the web by running on many



nodes, also known as clients 1, hosted around
the world in order to ensure that the blockchain
stays up and running. Each client runs its own
”Ethereum Virtual Machine,” also known as the
EVM [8]. This is where the logic of transactions is
materialized and the rules of the state machine are
maintained. Code for smart contracts are written
in the Solidity language which then gets translated
into byte-source code to be run on the EVM. In
addition, each client keeps track of its own copy of
the blockchain and what is known as a ”mempool”
– the pool of uncommitted transactions each client
has the choice to pull from [8].

In contrast to the traditional blockchain structure
that bitcoin uses to keeps track of a financial ledger
[15], Ethereum maintains a state machine to allow
users to run decentralized applications on top of its
blockchain by compiling code into what is known
as a set of ”smart contracts.” Put simply, smart
contracts are programs hosted on the Ethereum
network that use the underlying blockchain as
a database and the nodes around the world as
compute resources.

Because all operations on the Ethereum network
are processed by the EVM on some client, there
needs to be an incentive that drives clients to
process these operations. In the Ethereum proto-
col, each and every operation carried out on the
network carries something called a ”gas-price.” Es-
sentially, the gas price of an operation is a tax that
each client has to pay in order to have the transac-
tion eventually committed to the blockchain, part
of which is then tipped to the client that added the
block [8]. The gas price is adjusted based on [8]:

1) Job size: Larger jobs cost more gas
2) Job urgency: More urgent jobs cost more gas

The gas price (and as a result, the price of each
Ether) fluctuates based on what is known as an
”Automated Market Maker,” which is talked about
in more detail in sections below.

2.2.1. Life of a Transaction
To launch a transaction on the Ethereum net-

work, a user is required to fill in some valid fields
[8]:

• Recipient - The receiving address
• signature - Identifier of the sender

• value - The amount of ether being sent
• data - Optional field to include arbitrary data
• gasLimit - The maximum amount of gas units

that cam be consumed by the transaction
• maxPriorityFeePerGas - The maximum

amount of gas to be included as a tip to the
miner

• maxFeePerGas - The maximum amount of
gas willing to be paid for the transaction
(inclusive of baseFeePerGas and maxPriori-
tyForGas)

The ”gas price” associated with a certain trans-
action is the amount of currency required to uti-
lize the amount of compute resource that will be
required to run the transaction on the Ethereum
Network. The ”gas price” incentivizes nodes on
the ethereum network to pick up compute jobs for
transactions in exchange for a portion of the gas
price.

Once a transaction with valid fields is generated
on the user’s node, it is then transmitted to the
rest of the network which then may or may not
be picked up by nodes for further processing. In
Ethereum, pending transactions live in a datastruc-
ture known as a ”mempool.” This is a place where
transactions that have been submitted for process-
ing but not yet been committed to the blockchain
live. Mempools are an important feature of de-
centralized blockchains because transactions don’t
necessarily arrive at each compute node in order.

Because workers are incentivized with monetary
rewards, transactions in the mempool are generally
selected in preference for the jobs that have been
submitted with a higher gas price. When a job is
eventually picked up by a node, it then includes the
transaction into a new block with other transactions
to fill the block by hashing them into a Merkle tree.
It then competes with other nodes that may have
also picked up the job (also known as ”miners” or
”miner nodes”) to generate a proof of work.

Once the block and a valid hash is successfully
created, the client adds the block to the blockchain
and broadcasts it to the rest of the network, solid-
ifying the set of transactions included in it. In the
case that two miners add to the chain at the same
time, the network simply waits for the next block
to be mined without a tie before confirming the
new blocks [8].



Fig. 2. Illustration of the underlying blockchain powering Ethereum [8]

Fig. 3. Illustration of the underlying state machine powering Ethereum [8]

Frontrunning attacks take advantage of the prior-
ities that Ethereum clients will naturally gravitate
towards – given that most users will claim jobs
with the highest gas price, how can malicious
actors take advantage of the assumption and profit
from the technical details of the Ethereum net-
work?

3. Security Policies

In a traditional central exchange, there is a
singular authority or a group of individuals who
make administrative decisions on the behalf of the
rest of the individuals using the service. However,
decentralized exchanges differ significantly with
regards to this view on security – there is not
centralized group that makes decisions on the
behalf of others. Instead, the responsibility of
executing transactions and ensure they are secure
is distributed amongst the users of the protocol
through a unified consensus algorithm, i.e. a gov-
ernance structure that ensures that everyone has a
stake in the administration of the network. Even

the slightest changes to the set of algorithms that
governs the software requires a majority of the
users to enact.

In our security policy, we look at two dif-
ferent categories of administrative networks: the
decentralized exchange where the trade of certain
cryptocurrencies occurs, and the cryptocurrency
that is being traded.

3.1. Decentralized Exchanges
While decentralized exchanges are not part of

the Ethereum Network directly, they oftentimes act
as the middlemen for traders to buy and sell coins
on the Ethereuem blockchain. While the Ethereum
network and protocols allow users to buy and
sell ethereum, it does not provide users for an
automatic way to find such buyers for sellers and
vice versa.

As such, decentralized exchanges should have
the permissions to see open trades and match
sellers selling at a set price with buyers who are
willing to buy at that price or higher. On the other
hand, decentralized exchanges should also be able



to match buyers with any sellers who are willing
to sell for a certain price of lower. They should not
be able to alter any part of the blockchain itself,
nor edit the any transactions whether committed
or uncommitted as to manipulate the trades be-
tween two individuals. The decentralized exchange
should, however, be able to charge the buyer and/or
the seller for fees for using its service.

3.2. Ethereum
The Ethereum network should have the per-

missions to read the blockchain until the latest
uncommitted block. The Ethereum network (or
individual clients) should have the permission to
choose which transactions go into their new blocks
and to hash values such that they can add onto
the blockchain. However, they should not be able
to commit to the blockchain if they are given an
updated blockchain with newer transactions (they
would have to restart work).

3.2.1. Traders
In this security model, buyers and sellers should

have the same permissions. Buyers should be able
to purchase Ether for the agreed upon price, and
sellers should have the permission to sell the
blockchain in their ownership to others for a set
price. In this security model, neither the buyer nor
the seller should be surprised by the amount of
Ether they end up selling or receiving after the
transaction is complete.

In addition, buyers and sellers should not be able
to manipulate the blockchain or any of the smart
contracts built into it if they don’t own them.

4. Automated Market Maker

Automated market makers, AMM, are the un-
derlying protocols that powers a decentralized ex-
change. It allows assets to be traded by using
crypto liquidity pools as counterparties, instead of
a traditional market of buyers and sellers. Instead
of order books, AMMs use algorithms to match
buyers and sellers.

In particular, AMM use formulas to allow trad-
ing token pairs. For example, Bitcoin-USDollar

Fig. 4. Product rule states that the product of two liquiditiy stays
constant for the contract [17].

is a trading token pair. These formulas are also
known as smart contracts. AMMs do not use
order books or order types, instead, the formulas
determine asset prices. Because of AMMs, we do
not need a third party or trader to make a trade.
Instead, individual traders interact directly with the
contract, which makes the market for you.

One popular rule many AMMs used today is
the constant product rule, which states that total
amount of liquidity remains constant. As shown in
Figure 4, the product of the number of A token
and number of B token must be a constant.

4.1. Example of AMM with in-

sertion attack
In an insertion attack, also known as sandwich

attack, the attacker places one transaction before
and one transaction after the victim’s transaction in
hope of making some profit (refer to Section 5.2.)
for more details. In this section, we examine how
an AMM works and allows for insertion attacks.

Assume our liquidity pool contains 1000 A
tokens and 100 ETH. The product of the two
quantities is 100000, and this value must stay
constant throughout. Thus, the current price of A
is 0.1 ETH. In this scenario, let Bob be the attacker
and Alice be the victim. Assume that Bob has



some prior information about Alice’s transaction.
1) Bob makes a pre-emptive trade. He spends

5 ETH to buy A before Alice’s transaction.
The product rule states the following:

(1000−X) ∗ (100 + 5) = 100000

X is the number of A Bob is able to purchase
with 5 ETH. Note that we start with 1000
A and 5 ETH. Solving the equation above
reveals that X = 47.62. As a result, Bob
buys 47.62 A for 5 ETH.

2) Next would be Alice’s normal transaction.
She spends 10 ETH to buy A. Note that
Bob had knowledge of this transaction, so he
was able to buy A beforehand. After Bob’s
transaction, there are 952.38 A and 105 ETH
in the liquidity pool. The product rule states:

(952.38−X) ∗ (105 + 10) = 100000

Solving the equation above reveals that X =
82.81. Thus, after the transaction is executed,
Alice buys 82.81 A for 10 ETH.

3) Finally, Bob sells the 47.62 A he initially
bought. After Alice’s transaction, there are
869.57 A and 115 ETH in the liquidity pool.
The product rule states:

(869.57 + 47.62) ∗ (115− Y ) = 100000

Solving the equation above reveals that Y =
5.97. Thus, after the transaction is executed,
Bob sells 47.62 A for 5.97 ETH.

With this insertion attack, Bob makes a net gain
of 0.97 ETH. This example illustrates the role
AMM in pricing the assets in the liqudity pool
of a decentralized exchange.

5. Frontrunning types

All transactions are visible in the mempool for
a short period of time before being executed, thus,
observers of the network can see and react to an
action before it is included in a block. For example,
in a decentralized exchange where a buy order
transaction be can seen, a second order can be
broadcast and executed before the first transaction
is included. There are three main categories of
front-running attacks: displacement, insertion, and
suppression (Figure 5).

5.1. Displacement
In a displacement attack, an attacker A observes

a profitable transaction TV from victim V and
broadcasts its own transaction TA to the network.
TA has a higher gas price than TV , and miners will
include TA before TV . In a displacement attack, the
attacker does not require the victim’s transaction
to execute successfully. For example, consider a
scenario where a smart contract awards a user
with a prize if they can guess the preimage of
a hash. The attacker can wait for a user to find
the solution, copies the solution, and submit to the
network. In this case, the attacker’s transaction will
be mined first, thereby winning the prize, and the
user’s transaction will be mined last.

5.2. Insertion
In an insertion attack, an attacker A observed

a profitable transaction TV from a victim V . The
attacker then broadcasts two transactions TA1 and
TA2 to the network such that TA1 has a higher gas
price than TV and TA2 has a lower gas price than
TV . Insertion attacks are also known as sandwich
attacks. In insertion attacks, TA2 depends on the
successful execution of transaction TV . A well-
known example of insertion attacks is arbitraging
on decentralized exchanges, where an attack ob-
serves a large trade, also know as a whale, sends
a buy transaction before the trade to drive up the
value of the contract, and then followed by a sell
transaction.

5.3. Suppression
In a suppression attack, an attacker A observes a

transaction TV from a victim V and broadcasts its
transactions to the network. The attacker’s transac-
tions have a higher gas price than TV so that miners
will include A’s transactions before TV . By doing
so, A will be able to suppress transaction TV by
filling up the block with its transactions so that
TV cannot be included anymore in the next block.
Suppression attacks are also known as block stuff-
ing. Each block in Ethereum has a block gas limit.
The consumed gas of all transactions included in
a block cannot exceed this limit. A’s transactions
will try to consume as much gas as possible to



Fig. 5. Illustration of three main categories of frontrunning attacls: displacement, insertion, and suppression. Blue blocks TV represent
victims’ transactions, and red blocks TA represent the attacker’s transactions [9]

reach this limit so that no other transaction can
be included in the block. Suppression attacks are
often used in lotteries where the last purchaser of a
ticket wins if no one else purchase a ticket during
a specific time window. Attackers can purpose a
ticker and mount a suppression attack for several
blocks to prevent other users from purchasing
the ticket. Note that type of frontrunning attack
is expensive as it requires the attacker to place
multiple transactions with higher gas price than
the victim’s transaction TV .

6. Mitigating Attacks

There are a number of ways to prevent, de-
tect, and mitigate frontrunning attacks. However,
the details of exact solutions change over time
and depends on the decentralized exchange. In
this section, we extracted the main principles that
address the attack and analyzed the advantages
and drawbacks of each. A particular system may
implement more than one.

Most mitigations of front-running attacks can be
categorized into three classes. In the first class,
the blockchain removes the miner’s ability to arbi-
trarily order transactions by enforcing some order-
ing, or queue, for the transactions. In the second
class, cryptographic techniques are used to limit
the visibility of transactions, giving the potential
frontrunning less information to base their strategy
on. In the final class, decentralized applications
and smart contracts are designed from bottom-up

to remove the importance of transaction ordering
or time in their operations.

6.1. Transaction Sequencing

Ethereum miners store pending transactions in
pools and draw from them when forming blocks.
There is no intrinsic order to how transactions are
drawn, so miners are free to sequence them arbi-
trarily. The vanilla Go-Ethereum implementation
prioritizes transactions based on their gas price.
Since no rule is enforced, miners can sequence
transactions in advantageous ways. This created
opportunities for displacement, insertion, and sup-
pression attacks, which all depend on the ordering
the transactions.

However, a first-in-first-out order (FIFO) is not
possible on a distributed network because transac-
tions can reach different nodes in a different order.
Although the network can form a consensus based
on locally observed FIFO, this would increase
the rate of orphaned blocks, add complexity to
the protocol, and be unfair to certain users. We
can use a trusted third party to assign sequential
numbers to transactions, but this will be contrary
to blockchain’s core innovation of distributed trust.
However, some exchanges such as EtherDelta and
OxProject do centralize time-sensitive functionali-
ties.

An alternative would be to sequence transac-
tions pseduoradomly. For example, propposals like
Canonicial Transaction Ordering Rule by Bitcoin



Cash ABC [11] adds transactions in lexicograph-
ical order according to their hash. Ethereum can
apply this rule to make frontrunning statistically
difficult, but the protection is marginal at best
and might even open up doors for more attacks.
For example, front-runner can construct multiple
transactions, with slightly different values, until
they find a transaction lands at an optimal posi-
tion on the sequence. The front runner broadcasts
only this transaction. The miners that include this
transaction will position it in front of transactions
they heard about much earlier.

Another potential solution is having transactions
themselves enforce order. For example, transac-
tions can specify the current state of the contract
as the only state to execute on. This transaction
chaining only prevents insertion attacks but not
displacement attacks. A transaction chaining only
allows one state-changing transaction per state,
which is a drawback for active decentralized ap-
plications.

6.2. Confidentiality

6.2.1. Privacy-Preserving Blockchain
All transaction details in Bitcoin are made pub-

lic and participant identities are only lightly pro-
tected. A number of techniques increase confiden-
tiality and anonymity for crytocurrencies. Many
might believe that a confidential decentralized ap-
plication would not permit frontrunning since the
front-runner does not have access to the details of
the transaction he is front-running. However, they
are some edge cases to explore.

A decentralized-application interaction includes
the following components:

1) the code of the decentralized application
2) the current state of the decentralized appli-

cation
3) the name of the function being invoked
4) the parameters supplied to the function
5) the address of the contract the function is

being invoked on
6) the identity of the sender

Confidentiality applied to a decentralized applica-
tion could mean different levels of protection for
each of these. For frontrunning, function calls (3,4)

are the most important. However, function calls
could also be inferred from state changes.

The use case of privacy-preserving blockchains
need to be evaluated on a case-by-case basis. For
instance, one method used by traditional financial
exchanges to mitigate frontrunning attacks from
high frequency traders is a dark pool. Dark pool is
a (2,3,4)-confidential order book maintained by a
trusted party. Decentralized applications and smart
contracts can replace this trusted party. If the con-
tract addresses are known (no 5-confidentiality),
frontrunners, frontrunners can know about the traf-
fic pattern of calls to contracts. This opens up many
opportunities for attacks. For example, if each asset
on an exchange has its own market contract, this
leaks trade volume information.

6.2.2. Commit/Reveal
Although confidentiality alone is insufficient for

mitigating frontrunning attacks, a hybrid approach
of sequencing and confidentiality can be effec-
tive. We can apply a crytographic trick known as
commit/reveal. The main idea of commit/reveal is
to protect the function call until the function is
queued in a sequence of functions to be executed.
Once the sequence is established, the confidential-
ity is lifted and the function can only be executed
in the order it was queued.

A commitment scheme enables one to commit
to a digital value while keeping it a secret to the
public. The committed value can then be opened
at a later time when the committer wills. One
common use case of this scheme is to submit the
cryptographic hash of the value to a smart contract,
and later reveal the original value, which can be
verified by the contract to correctly hash to the
commitment. Hashing the initial value reduces the
risk of frontrunning attacks since attackers cannot
see the values.

One application of this scheme to blockchain
is Namecoin [12], is a cryptocurrency originally
forked from bitcoin software. Namecoin adopts
the commit/reveal scheme because users send a
committ transaction which registers a new hidden
domain name. Once the first transaction is con-
firmed, a time delay begins. After the delay, a sec-
ond transaction reveals the details of the requested
domain. If the reveal transaction is executed and



Fig. 6. In the commit/reveal scheme, the user first commits a
hashed transaction. When the transaction is ready to be executed,
the user then sends a key to unlock the hashed transaction [9].

confirmed faster than an adversarial transaction,
the attack can be prevented.

Note that commit/reveal is a two step process,
and aborting after the first round could be an
issues. For example, the attacker can spray the se-
quence with multiple committed transactions with
no intention of executing them at all. Also note
that any muti-step protocol can be unstable on a
distributed network.

6.3. Design Practice
The last category of mitigation is to assume

that front-running is unpreventable and we must
redesign the functionality of decentralized applica-
tions to remove any benefit from it. For example,
decentralized exchanges can adopt a call market
design instead of a time-sensitive order book to
disincentivize frontrunning. In a call market de-
sign, prices are dictated by the exchange rather
than by bids and offers. Orders are also aggregated
and collected at designated intervals instead of
trading throughout the day.

Malinova et al. [14] also discussed front-
running mitigations for blockchain-based trading
platforms. Instead of investigating decentralized
applications, they developed an economic model
where transactions, asset holdings, and traders’
identities have greater transparency than in stan-
dard economic models. They argued that trans-
parency can be achieved by blockchain technol-
ogy. However, in their model, they assumed that

entities can interact directly over private channels
to arrange trades. They defined front-running in
the context of private offers, where parties might
adjust their position before accepting or countering
an offer. This model is different from the decen-
tralized models where entities cannot interact with
one another over private channels.

7. ZK-Snarks

Perhaps the most secure way of preventing front
running is to hide certain details of the transac-
tion altogether. Zero Knowledge proofs are proofs
where the prover can prove knowledge of a value
without revealing the value to the verifier[10]. A
critical part of the sandwich attack is that the
adversary can take advantage of the Automated
Market Maker to generate profit. Recall, after each
transaction, the product of the quantities of both
assets in the liquidity pool must be kept constant.
Thus, the values of both quantities determines what
the relative price of the assets are. Using Zero
Knowledge proofs, a trader could hide the exact
quantities of each asset and submit a proof that
the product of the quantities is constant! [1] The
exact quantities would be revealed at a later time.
This discourage sandwich attacks as the adversary
can no longer calculate the exact value of each
transaction and cannot calculate when trades are
profitable.

A simple example of a Zero Knowledge proof
is the following: Given a public value gx where x
is secret, the prover wishes to prove knowledge of
x. The prover and verifier performs the following
steps:

1) Prover picks value v and sends gv to the
Verifier.

2) Verifier picks value c and sends it to the
Prover

3) The Prover calculates v− xc and sends it to
the Verifier

4) The Verifier evaluates gv−xc ∗ (gx)c and ver-
ifies if this value is equal to gv.

This process can be repeated many times until
the verifier is properly convinced that the prover
knows x[2].

The ZK-Snark (Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge) takes the zero



knowledge proof a step further and enforces that
the verifier does not need to interact with the
prover [7]. That is, the verifier and the prover do
not have to be online at the same time. The prover
can publish a proof and the verifier can read it
and verify it at a later date. This allows for zero
knowledge proofs to be implemented in a much
wider range of practical applications. For exam-
ple, it would be very difficult if every Ethereum
transaction required multiple parties to be online
at the same time and verify the transactions using
an interactive zero knowledge proof.

We can convert the above example into a ZK-
Snark by enforcing that the value of c is some de-
terministic Hash function of g, gx, gv! If the Hash
function is secure, the prover cannot control the
value of c and thus it will be hard to fake the proof.
This removes the need for the verifier to be present
during the proof. Instead, any verifier can read the
published proof and verify for themselves that this
works. While this example seems quite simple, in
reality, ZK-Snarks are quite complicated.

To be practically used, the ZK-Snark must sat-
isfy some strict properties.

• Succinctness - The size of the published
proof should be small, regardless of the
amount of computation required to obtain the
value being proved.

• Non-Interactivity - The prover must be able
to publish a proof that can be verified by
any verifier without direct interaction with the
prover.

• Correctness - The statement being proved
must be correct with very high probability.

• Zero Knowledge - The verifiers should not
be able to extract any information about the
information being proved.

In the following, we will provide an outline of
some of the fundamental underlying concepts of
ZK-Snarks, including a description of the Pinoc-
chio protocol, but will stop short of providing a
discussion for how ZK-Snarks are implemented in
practice.

7.1. Pinocchio Protocol
In this section, we present the Pinocchio

protocol[16], the first protocol to create general

ZK-Snarks which are efficient enough to be used
at scale. The Pinocchio protocol in essence allows
the prover to prove that they performed a series of
computations and have calculated a valid solution
without actually revealing any information on the
solution itself! We will walk through the key ideas
behind the Pinocchio protocol and finally conclude
with a full discussion on how the Pinocchio pro-
tocol works.

7.1.1. The Polynomial Method
The core idea behind many ZK-Snarks is ex-

ploiting the fact that the number of roots of a
polynomial is upper bounded by the degree of
the polynomial. Given two distinct polynomials of
degree d, they can be equal in at most d points.
For a fixed value s the fact that two polynomials f
and h satisfy the property f(s) = h(s) is negligibly
small unless f = h. Thus, if the prover can show
the evaluation of f, h is the same at some point
s outside of the prover’s control, then the verifier
can safely assume f = h [5].

Polynomials exhibit many nice properties which
we will discuss more in detail in the following
sections. For example, given d+ 1 points, we can
efficiently construct the unique degree d polyno-
mial that passes through all of those points using
the Lagrange basis polynomials.

In the following discussion, we will ignore de-
tails about the field we do computations in. In
implementation, these polynomials live in finite
fields, as well as any computations we perform.

7.1.2. Evaluation at a Hidden Point
The next piece of the polynomial method re-

quires the prover evaluating a polynomial, in the
encrypted space, at a point s without the prover
being able to discover s. Recall, the encrypted
space is a mapping x → gx. The Diffie-Hellman
Assumption provides confidence that it is hard
to recover information about the original value
from the encrypted value. To start, the verifier
will provide the following values: g, gs, gs2 , ..., gsd .
The prover can then calculate gp(s) for any given
polynomial p(x) = adx

d + ...+ a0 by the formula
gp(s) = (gs

d
)ad ∗ (gs

d−1
)ad−1 ∗ ... ∗ ga0 . Thus, the

prover has evaluated the polynomial at a hidden



point s and can publish this value without revealing
information about the polynomial coefficients [5].

7.1.3. Knowledge of Exponent As-

sumption
Suppose the prover is given the values (g, ga)

where a is secret. The Knowledge of Exponent
Assumption assumes that if the prover has calcu-
lated gar for some number r, the prover must have
done the computation (ga)r, i.e. raised the value
ga to the power of r rather than raising gr to the
power of a. Thus, if the prover can publish values
X, Y where Xa = Y , then since the prover does
not know a, and using Knowledge of Exponent
Assumption, this guarantees the prover must have
calculated X, Y by raising each of g, ga to the
same power r [6].

We can generalize this framework to multiple
pairs of values. If the prover is given values
(g1, g

a
1), ..., (gk, g

a
k), and the prover publishes val-

ues X, Y where Xa = Y , then there must be
values w1, ..., wk where the prover calculated X, Y
using the following computations:

X = gw1
1 ...gwk

k

Y = (ga1)
w1 ...(gak)

wk

Thus, we can reason that the value X came
from multiplying some combination of the gi’s.
Furthermore, X, Y come from the exact same
coefficients wi! This idea is very powerful and is
at the heart of the Pinocchio protocol.

7.1.4. Pairing
In many use cases of Cryptography were we

consider values in groups, we choose groups which
we hope to satisfy the Decisional Diffie-Hellman
Assumption. That is, given three values x, y, z, it
is impossible to tell whether these numbers are of
the form ga, gb, gab. We will assume without proof
that there exists groups G1, G2, GT and bilinear
function e : G1 × G2 7→ GT [13] that satisfy for
all group elements g1, g2, g3 in the aforementioned
groups, and integers a, b, the following require-
ments hold:

e(ga1 , g2) = e(g1, g2)
a

e(g1, g
b
2) = e(g1, g2)

b

e(g1g2, g3) = e(g1, g3)e(g2, g3)

e(g1, g2g3) = e(g1, g2)e(g1, g3)

This obviously breaks the DDH assumption as
we can always check if e(ga, gb) = e(gab, g).
However, this lets us verify the product of cer-
tain exponents a ∗ b = ab without revealing a, b
itself. The groups G1, G2, Gt and the function e
are beyond the scope of this paper. For further
discussion, refer to the field of Elliptic Curve
Cryptography.

7.1.5. Parameter Generation
One of the end goals of ZK-Snarks is to be

non-interactive. This means that we should not re-
quire the verifier to generate values for the prover.
This leads us to the question, how are the values
(g1, g

a
1), ..., (gk, g

a
k) and g, gs, gs

2
, ..., gs

d created?
How should they be used? If these values must be
recomputed for each prover and verifier pair, then
this would destroy the non-interactivity condition.
Ideally, these values could be used by the prover
(or multiple provers) and any verifier could verify
the proof. If any one person knows the value of
a, s, then they could create false proofs.

Given a trusted party, the trusted party could
generate (g1, g

a
1), ..., (gk, g

a
k) and g, gs, gs

2
, ..., gs

d

and then throw away a, s. These public values are
known as public parameters. The values a, s are
refered to as ”toxic waste” and cannot be known
by anyone. The current method for generating
public parameters is by using elaborate generation
”ceremonies” where multiple parties must stay
online and interact with each other to generate
these parameters without any one part knowing
the entirety of the parameters. The exact details
of these ceremonies are beyond the scope of this
paper. ZCash has successfully implemented these
ceremonies to generate public parameters for the
ZK-Snarks used for ZCash transactions[3].

7.1.6. Encoding of Computation
We now begin discussion on the actual Pinoc-

chio Framework. In this framework, the prover
wishes to prove that they did a certain series of



computations [16]. The computations can involve
any number of variables and can involve addition,
subtraction, multiplication, and exponentiation by
a constant integer value. For example, a simple
computation can be something like y = x3, z =
x+ y + 3.

The computations are encoded as a series of
equations in a very specific form. We will ”unroll”
the computations into n variables and n equations.
Suppose the variables are w1, ..., wn. By default
the first equation is w1 = 1. The kth equation is
of the following form:

wk = (a1,kw1+...+ak−1,kwk)(b1,kw1+...+bk−1,kwk)

For example, our simple computation can be
unrolled into the following sequence of equations:

1) w1 = 1
2) x = k
3) T1 = x ∗ x
4) y = T1 ∗ x
5) z = x+ y + 3w1

And our solution vector W = ⟨1, x, T1, y, z⟩ =
⟨1, k, k2, k3, k3 + k + 3⟩ for some value of k.

7.1.7. Rank One Constraint System
If we have some vector W which satisfies all

of the n equations, then W must be the result
of computing the computation! Thus, the Prover
wishes to prove that they know a valid vector
W which satisfies each equation. note that the
coefficients of the equations ai,j and bi,j are public
and they uniquely define the computation [4].

The equation can be written as:

Ck ·W = (Ak ·W )(Bk ·W )

Where Ck is the kth basis vector and
Ak = ⟨a1,k, ..., ak−1,k, 0, ..., 0⟩ and Bk =
⟨b1,k, ..., bk−1,k, 0, ..., 0⟩.

These equations collectively are known as the
Rank One Constraint System (R1CS).

7.1.8. Quadratic Arithmetic Program
The 3n vectors Ak, Bk, Ck (for all k) are pub-

licly available.

We wish to transform the constants of the n
equations into polynomials. Using Lagrange Inter-
polation, we can creat 3n degree n−1 polynomials
Ai(x), Bi(x), Ci(x) (for all i) where Ai(k) = ai,k,
Bi(k) = bi,k, Ci(k) = ci,k for all i, k. Notice that
these 3n polynomials are uniquely determined by
the constraints of the system. We assume that these
polynomials are publicly available. Thus, our n
equations can be rewritten as:

∑
i

wiCi(k) = (
∑
i

wiBi(k))(
∑
i

wiBi(k))

for all integer 1 ≤ k ≤ n.
Now, let’s consider the three polynomials

A(x) =
∑

iwiAi(x), B(x) =
∑

i wiBi(x),
C(x) =

∑
i wiCi(x). Then we have that

A(x)B(x) − C(x) is divisible by Z(x) = (x −
1)(x − 2)...(x − k) The polynomials A,B,C and
vector W . comprise the Quadratic Arithmetic Pro-
gram (QAP) [5]! These polynomials are the basis
of the Zero Knowledge proof. The Zero Knowl-
edge proof consists of proofs for the following
three statements:

1) The polynomials A,B,C must be some lin-
ear combination of Ai(x), Bi(x), Ci(x)

2) The polynomials A,B,C must actually
be the same linear combination of
Ai(x), Bi(x), Ci(x). That is, there is
some vector W where

A(x) = W · ⟨A1(x), ..., An(x)⟩

B(x) = W · ⟨B1(x), ..., Bn(x)⟩

C(x) = W · ⟨C1(x), ..., Cn(x)⟩

3) The polynomial A(x)B(x)−C(x) is divisi-
ble by Z(x) = (x− 1)(x− 2)...(x− n).

7.1.9. Additional Public Parameters
In order for the prover to prove these statements,

additional public parameters must be available.
The public parameters are as follows: The se-
cret ”toxic waste” variables are ka, kb, kc, k, t. For
1 ≤ i ≤ n, the following values are the public
parameters[4]:

(gAi(t), gkaAi(t))



(gBi(t), gkbBi(t))

(gCi(t), gkcCi(t))

(gAi(t)+Bi(t)+Ci(t), gk(Ai(t)+Bi(t)+Ci(t)))

gka , gkb , gkc , gk

Note that if anyone knows the ”toxic waste”
variables, they could construct falsified proofs!

The prover should be able to publish 8 val-
ues Xa, Ya, Xb, Yb, Xc, Zc, X, Y where Xka

a = Ya,
Xkb

b = Yb, Xkc
c = Yc, Xk = Y , and XaXbXc = X .

An honest prover can generate these values by
evaluating:

Xa = gA(t) =
∏
i

(gAi(t))wi

Ya = gkaA(t) =
∏
i

(gkaAi(t))wi

Xb = gB(t) =
∏
i

(gBi(t))wi

Yb = gkbB(t) =
∏
i

(gkbBi(t))wi

Xc = gC(t) =
∏
i

(gCi(t))wi

Yc = gkcC(t) =
∏
i

(gkcCi(t))wi

X = gA(t)+B(t)+C(t) =
∏
i

(gAi(t)+Bi(t)+Ci(t))wi

Y = gk(A(t)+B(t)+C(t)) =
∏
i

(gk(Ai(t)+Bi(t)+Ci(t)))wi

The verifier can verify these values by using
the pairing function e which we assumes exists
on the group. Note that according to our previous
discussion, the verified can verify these equations
without knowing ka, kb, kc, k due to the properties
of the pairing function!

If these equations are verified, then the veri-
fier can be confident in each of the statements
needed to complete the proof! From our dis-
cussion on Knowledge of Exponent Assumption,
because Xka

a = Ya, then Xa must be some
product of the values gAi(t). Thus we know that
Xa =

∏
i(g

Ai(t))w
a
i for some vector wa. The

verifier doesn’t know wa but is confident that
this vector exists. Now let A′(x) =

∑
iw

a
iAi(x).

Similarly define vectors wb, wc and polynomials
B′(x), C ′(x). Now, we need to verify the fact that
A′, B′, C ′ were generated from the same vector
w! Look at X, Y . Since Xk = Y , the verifier is
confident that there is some vector w such that
X =

∏
i(g

(A(t)+B(t)+C(t)))wi . If XaXbXc = X , then
we know

A′(t)+B′(t)+C ′(t) =
∑
i

wa
iAi(t)+wb

iBi(t)+wc
iCi(t)

=
∑
i

wiAi(t) + wiBi(t) + wiCi(t)

Since t is secret, the verifier can be confident
that the polynomials on both sides of the equation
are in fact the same polynomial! Note that all this
time the verifier does not have any information on
w,wa, wb, wc! Furthermore, since the polynomials
are equal, we can also be confident that w = wa =
wb = wc.

The final step in the proof is to verify that there
exists some polynomial H(x) where A(x)B(x)−
C(x) = H(x)Z(x). The prover actually publishes
a ninth value gH(t). The final verification step is to
verify the statement

e(gA(t), gB(t))/e(gC(t), g) = e(gH(t), gZ(t))

With all these facts verified, the verifier can
be confident that the prover has a valid vector w
which satisfies the computation constraints!



References

[1] Amm front-running resistance with snarks.
[2] Breaking down eth 2.0 – zk-snarks and zk-rollups.
[3] Parameter generation.
[4] Zk-snarks: Under the hood.
[5] Aritra Banerjee, Michael Clear, and Hitesh Tewari. Demysti-

fying the role of zk-snarks in zcash. In 2020 IEEE Conference
on Application, Information and Network Security (AINS),
pages 12–19. IEEE, 2020.

[6] Mihir Bellare and Adriana Palacio. The knowledge-of-
exponent assumptions and 3-round zero-knowledge protocols.
In Annual International Cryptology Conference, pages 273–
289. Springer, 2004.

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct {Non-Interactive} zero knowledge for a von
neumann architecture. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 781–796, 2014.

[8] Vitalik Buterin. Ethereum white paper: A next generation
smart contract & decentralized application platform. 2013.

[9] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. Sok: Transparent dishonesty: front-running attacks on
blockchain. 2019.

[10] Oded Goldreich and Yair Oren. Definitions and properties of
zero-knowledge proof systems. Journal of Cryptology, 7(1):1–
32, 1994.

[11] Shammah Chancellor (Bitcoin ABC) Tomas van der
Wansem (Bitcrust) Joannes Vermorel (Lokad), Amaury Séchet
(Bitcoin ABC). Canonical transaction ordering for bitcoin.
2018.

[12] Harry A. Kalodner, Miles Carlsten, Paul Ellenbogen, Joseph
Bonneau, and Arvind Narayanan. An empirical study of
namecoin and lessons for decentralized namespace design. In
WEIS, 2015.

[13] Neal Koblitz and Alfred Menezes. Pairing-based cryptography
at high security levels. In IMA International Conference on
Cryptography and Coding, pages 13–36. Springer, 2005.

[14] Katya Malinova and Andreas Park. Market design for trading
with blockchain technology . 2016.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system,” http://bitcoin.org/bitcoin.pdf.

[16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computation.
In 2013 IEEE Symposium on Security and Privacy, pages
238–252. IEEE, 2013.

[17] Yongge Wang. Automated market makers for decentralized
finance (defi), 2020.

[18] wordreference. Frontrunning.


	Introduction
	Background
	Ethereum Overview
	Blockchain

	Ethereum Network
	Life of a Transaction


	Security Policies
	Decentralized Exchanges
	Ethereum
	Traders


	Automated Market Maker
	Example of AMM with insertion attack

	Frontrunning types
	Displacement
	Insertion
	Suppression

	Mitigating Attacks
	Transaction Sequencing
	Confidentiality
	Privacy-Preserving Blockchain
	Commit/Reveal

	Design Practice

	ZK-Snarks
	Pinocchio Protocol
	The Polynomial Method
	Evaluation at a Hidden Point
	Knowledge of Exponent Assumption
	Pairing
	Parameter Generation
	Encoding of Computation
	Rank One Constraint System
	Quadratic Arithmetic Program
	Additional Public Parameters


	References

