
Timing Attacks on Cryptographic Algorithms

Timmy Xiao, Yosef Mihretie

May 2022

1 Introduction

Today’s modern processors have many innovations that have allowed computers
to be faster. Although these changes in computer architecture have resulted
in better efficiency and performance, a lot of private data that is processed by
these devices can be leaked through hardware components such as branch pre-
dictors and caches. These components would be known as side-channels and
leaking information through them would be known as a side-channel attack. A
recent and notable group of attacks known as Spectre[5] affects many modern
processors today due to their use of speculative execution. Side-channel attacks
are dangerous because they could render theoretically secure cryptographic al-
gorithms useless through leaked information. In this work, we highlight the
threat to cryptographic code from Spectre style attacks and give an overview of
defenses that can be deployed in hardware and software.

2 Side-channel Attacks

2.1 Flush+Reload

Modern processors have caches to reduce the latency of obtaining data from
memory. In multi-core processors, caches are shared between cores, but this can
sometimes, although rare, lead to the cache and memory to be in a inconsistent
state[1]. CPU manufacturers solve this problem by making a instruction that
just flushes the cache, so the next load instruction must be fetched from memory.
However this lead to the ability for adversaries to explicitly flush the cache to
perform timing attacks, since loading from a cache line is significantly faster than
loading from memory. The attacker would just flush contents of cache, wait for
the victim to performance an operation, measure the times to reload lines to
see which operations were being done, and then repeat to see the sequence of
operations [3]. During a reload of some address, if the adversary gets a shorter
access time than usual, then they can conclude that the victim has accessed the
same cache block.

1

2.2 Spectre

Spectre is a group of vulnerabilities that are caused by timing attacks due
to processors having the ability to perform branch prediction with speculative
execution and caching such results [5]. Speculative execution hides memory
latency by performing work ahead of time that might be unneeded. This is
usually employed in branch prediction so results would be already be calculated
if the correct branch is used and discarded if the wrong branch is used. However,
mispredicted speculative execution can result in reading memory in an area
that is considered private. This is usually caused by malicious user input that
creates an out-of-bounds access in an array that goes to a private piece of data.
Although the results are discarded as the branch was mispredicted, the data can
still linger in the cache. The processor’s cache would now have the private data,
making the cache a side-channel, and the attacker can now use timing attacks,
similar to flush+reload, on the cache to extract information about the private
data.

3 Possible Attacks

3.1 Threat model

We have a trusted cryptographic software running on a machine along with
an untrusted program. This captures a wide range of setups ranging from
browsers that have cryptographic modules running along a javascript code from
a webpage that can not be trusted and cloud service providers running programs
from various users on the same machine, some of which might be cryptographic
in addition to the cryptographic software provided by the cloud service. The
cryptographic software contains keys and derivatives of keys that are critical
for its security. The untrusted program can invoke a cryptography method by
using one of the API points defined. This could be a request to decrypt, encrypt,
verify, sign a message etc. This affords enough flexibility to capture the CCA
and CPA security protocols. An adversary that controls an untrusted program
would like to leak in part or completely the secret keys or values tainted with
the secret keys to aid in cryptanalysis. This can be achieved by using some of
the side-channel attacks discussed above.

3.2 Flush+Reload attack on RSA

RSA relies on modular exponentiation which is basically calculating gx mod n.
To decrypt, one must raise their ciphertext c to their decryption key d modulo n
or cd mod n. To efficiently calculate cd, most implementations use a technique
called exponentiation by squaring [3]. In observation, we loop through the
binary bits of our exponent. We start at x = 1, and repeatedly square x to be
the new x in each step. In addition, we check if the bit is set; if it is set, we also
multiply by the base and set that to be x. When we are setting, we also reduce
to do modulo operation. A pseudocode implementation is shown here:

2

Algorithm 1 Exponentiation by Squaring

Input: base b, exponent e, modulo m
x← 1
for i← |e| − 1, . . . , 0 do

x← x ∗ x (Square)
x← x mod m (Reduce)
if e[i] = 1 then

x← x ∗ b (Multiply)
x← x mod m (Reduce)

end if
end for
return x

Notice for unset bits, we only square and reduce, while for set bits, we
square, reduce, multiply by base, and reduce again. If we can determine the
sequence of operations, we can reveal the exponent or the decryption key in
RSA. Investigating the RSA implementation in GnuPG 1.14.13[2], we would
find these operations in the folder mpi.

Operation Function Location
square mpih_sqr_n mpi-internal.h:240

reduce mpihelp_divrem mpi-internal.h:256

multiply mul_n mpi-mul.c:113

3

Figure 1: Sample Trace for a flush+reload attack on exponentiation by squar-
ing for 4 operations. One could see the sequence being square+reduce,
square+reduce, square+reduce+multiply+reduce, and square+reduce. They
can then conclude that the bits here would be 0010.

Now an attacker would share the same pages as the process that is running
GnuPG. It would then flush the cache, and then reload each function into the
cache and measure the times it took to load them. Shorter times would be
seen as the operation being done. By measuring the sequence of operations, the
attacker could possibly recover the binary bits of the decryption key, leaking
that information through a side-channel.

3.3 Sample Spectre Attack

1 s t a t i c i n t r s a o s s l p r i v a t e d e c r y p t (i n t f l en , const unsigned char ∗
from , unsigned char ∗ to , RSA ∗ rsa , i n t padding)

2 {
3 BIGNUM ∗ f , ∗ r e t ;
4 f = BN CTX get (ctx) ;
5 num = BN num bytes (rsa−>n) ;
6 . . .
7 i f (f l e n > num) {
8 ERR raise (ERR LIB RSA , RSA R DATA GREATER THAN MOD LEN) ;

4

9 goto e r r ;
10 }
11 . . .
12

13 /∗ do the decrypt ∗/
14 i f (! rsa−>meth−>rsa mod exp (ret , f , rsa , ctx))
15 goto e r r ;
16 }
17 . . .
18 }
19

20 ## th i s i s d i f f e r e n t from what i s in the codebase ##
21 s t a t i c i n t r sa o s s l mod exp (BIGNUM ∗ r0 , const BIGNUM ∗ I , RSA ∗ rsa ,

BN CTX ∗ ctx)
22 {
23 . . .
24 some var iab l e = f (rsa−>p) ;
25 I [f (rsa−>p)] = x ;
26 . . .
27 }

The above code snippets are taken from the openssl implementation of RSA.
The last function does exist in the code base, but it is highly complicated and
they appear to have made the important defensive techniques which we will
discuss in section 5. The code here is a highly modified snippet to help us
demonstrate the attack process. It is the same function that indirectly gets
called at line 49.

We will first start with Spectre variant 1 [5].

1. Imagine there is a victim program running on the same core as the openssl
service program and it requests rsa ossl private decrypt service by invok-
ing the corresponding API end.

2. The victim then manipulates a shared cache to make the parameter flen
uncached.

3. By influencing the branch prediction mechanism, the attacker makes the
program speculate that the if condition at line 38 evaluates to false. This
condition doesn’t get resolved until flen can be fetched from memory which
can be a lot of cycles.

4. Meanwhile, the speculative execution could get to line 44 where a call to
rsa mod exp, which is an indirect call to rsa ossl mod exp, is made. This
call accesses I, a user provided array, with an index that is tainted with
the secret value p.

5. When flen is finally read and the condition resolved, the speculative pipeline
will be squashed. This will however leave the cache with the artifacts of
the speculative execution.

6. The attacker can now probe the shared cache to recover the secret value
p partially or completely. This can be done in a way that is similar to the
flush+reload attack above.

5

4 Defense

In this section, we discuss defensive features that aid in strengthening the secu-
rity of cryptographic applications at the level of hardware, compiler, operating
system, and the applications themselves.

4.1 Hardware

Many of the side channel attacks mentioned above arise due to the performance
enhancing features of the hardware. Thus fixing them inevitably involves the
hardware and it does so usually at the cost of performance. In this subsection,
we discuss a few ideas that are explored elsewhere and speculate about the
future.

Isolating cryptographic executions is the first solution we explore. Spectre
and Meltdown presume the victim and the attacker share a memory or execution
unit through which they can establish a side-channel. If we completely isolate
the cryptographic software by running it on a core dedicated to it, this can be
avoided. The most extreme form of this is to have cryptographic processing
units. This usually also comes with performance benefits. This is already the
case in Apple devices which include The Secure Enclave for such processing [6].

The other defensive hardware technique we explore is using more secure
caching protocols. Many side-channel attacks assume there is a shared level of
cache that is inclusive. They further assume that the adversary program can
effect ejection of cache lines in the private cache of the core running the victim
program. This is usually done by executing an eviction on the shared, inclusive
level of cache. We suggest as a mitigation to Spectre and other similar attacks
an improved, security-aware caching protocol. A recent work came up with a
protocol called SHARP that makes shared caches induce as little evictions in
the private caches of the cores that didn’t cause the eviction[sharp]. This is
done by processing core valid bits. In a shared cache line, core valid bit i is set
if core i contains this line in its private cache. When the victim tries to evict a
certain cache line by accessing a conflicting address, the replacement policy first
tries to evict the lines at the conflicting address that are from the requesting
core. This work is a good start in what we think should be given more attention
in the future.

Focusing on meltdown, hardware manufacturers like Intel have issued patches
to resolve the danger. We can guess these patches target not granting memory
accesses speculatively, i.e. until the necessary memory permission checks are
performed.

Tagged architecture is an approach to hardware design that strives to en-
force security protocols in hardware. Its target is memory-safety: memory lo-
cations store metadata about access information along with hardware features
that allow processing the metadata to enforce the security protocols with low
performance overhead. As mentioned above, memory-safety is essential for the
security of any software program. This is specially true for cryptographic ap-
plications that routinely process data presented by the user. With respect to

6

spectre, spectre variant 1 relies on being able to guess a memory location that is
mapped in the address space of the cryptographic program that it can leverage
as a side-channel after getting it cache. Having a memory safety vulnerability
will make it easy to find such an address and escalate a spectre vulnerability
into a full chain exploit. Thus, ensuring memory-safety in hardware while pre-
serving performance would be a great feature to have. We are not aware of a
complete product of such a processor, but we came across interesting instruction
set extensions for tagged architecture that we thought were interesting [comet].
The architecural memory protection can also be implemented partially. That
is the program can annotate the cryptographic keys, the compiler can figure
out the associated data that needs to be protected and use the tagged memory
locations for these. This is an interesting area of research for the future.

4.2 Compiler

Compilers modify code in the process of generating binaries to improve perfor-
mance and security. They do this by performing static and dynamic analysis on
an intermediate representation of the code. Thus they have a potential in im-
proving the security of cryptographic code is specifically crucial. By reordering
or inserting new code, they can help prevent side-channel attacks. In this sec-
tion, we first discuss some general guidelines for how compilers could be utilized
in ensuring the security of cryptographic code. We will then provide a review
of recent work in the literature on the topic.

Our ideal compiler would allow the programmer to annotate variables that
hold security critical data. This is primarily keys and other values tainted with
keys. Once this is done, the compiler would reorder and insert new code to
make it hard to carry out a side-channel attack. For instance, spectre variant 1
relies on the target value being used to index into an array. This has to follow a
branch statement and is executed speculatively. The access to the array, which
is cached, is the side-channel. If the key is annotated, the compiler can prevent
this chain by for instance making sure blocks that follow a branch statement
with a predicate that is influence by user input and that use derivatives of keys as
indices into arrays are not executed speculatively. Alternatively, it can reorder
the code so that even if a block is executed speculatively, it is unlikely to reach
to the line where the key is used before it can get squashed. It can do so by
reordering code to move the key access as far from the block entry as possible.
The compiler gets to do decide where variables get stored in memory, when to
fetch them to register and when to spill them. This is crucial for security. We
recommend compilers keep keys in registers as much as possible. Additionally,
it is important to make sure keys and their derivatives do not share a cache
line with data that can possibly be controlled by the user. For instance, in the
openssl program the rsa struct contains both private and public keys of the rsa
protocol. If its memory layout is not idea enough to have a public key share
a cache line as a private key, then the private keys will be loaded to memory
while let’s say the adversary invokes a verify function. Knowing the public keys,
the adversary is further assisted in probing the cache to find the private keys.

7

Therefore compilers could pay series attention about what data shares cache
lines with the private keys. We also suggest keeping as much distance between
buffers and keys in memory. Moreover, we suggest the memory layout should
be randomized. Compilers can also take the responsibility of erasing artifacts of
secure keys from the cache after a cryptographic function that used them was
invoked.

Since the spectre paper was published, researchers have looked into us-
ing compilers to defend against them. One of the first defenses to come out
was that by Microsoft Visual’s C/C++ compiler. Their approach is to insert
lfence instruction before vulnerable blocks. These prevent speculative execu-
tion. Nonetheless, their approach for detecting vulnerable blocks was extremely
ineffective. One test found that they can detect about 2 in 15 cases. Another
interesting work is the Speculative Load hardening mitigation. This technique
inserts hardening instructions that zero out the pointers with data dependency
with branch conditions. This mitigation addresses only variant 1 of Spectre.
Moreover, its overhead has been reported to be as high as 36%. One interesting
work we found does so by using static analysis to locate the blocks that follow a
branch and could leak a key and using the fences to prevent their speculative
execution. An interesting work we came across that aligns with our ideas is
BLADE [blade]. BLADE is a compiler solution that does some of the things
we suggested above in a rigorous manner. BLADE allows programs to annotate
variables that are critical for security, it then performs static analysis possible
leaks. BLADE prevents this leaking in speculative execution by cutting the data
flow from the protected variable to the leaking statement until the branch his
resolved. Note that this does not require stopping speculative execution, thus
it is a performance solution. Moreover, it analyzes the programmer specified
protect variables using a max-flow algorithm to determine if the same security
can be achieved by a smaller set of protect statements.

4.3 Operating System

The operating system also is a critical part of security. The operating system
is responsible for enforcing memory isolation of processes. Memory safety miti-
gation features like Address Space Layout Randomization are also usually done
at the operating system level. The OS is also generally responsible for pseudo-
random number generation, which is an essential component of cryptographic
protocols. These are all critical pieces of security and should be ensured to
the best degree possible. In this section however, we focus on how operating
systems can help mitigate dangers from Spectre.

The first important feature we suggest is security-aware scheduling. In the
model we laid out earlier, the victim program (a cryptographic software in this
case) needs to share a level of cache with the attacking program for a spectre
style attack. The operating system can mitigate this by scheduling crypto-
graphic programs on cores that don’t share a cache level with an untrusted
program. Besides sharing cache levels, influencing the branch prediction mech-
anism of the victim program is an important part of spectre. Operating systems

8

should take all of this while scheduling programs. We suggest a privilege based
approach where an untrusted code is run in the lowest privilege possible and
cryptographic code higher in the hierarchy as much as possible. When schedul-
ing, a lower privilege program should not be allowed to share resources with a
higher privilege program.

Finally we discuss Address Space Layout Randomization. Address Space
Layout Randomization is an important component in preventing memory cor-
ruptions from leading into full exploits. Besides that however, it also plays a
part in preventing side-channel attacks. Many of the side-channel attacks we
talked about rely on the adversary knowing the address of a memory location
that is to be used as a channel through the cache. This is the array in Listing 1.
If ASLR is implemented sufficiently well, then the attacker can not guess where
these arrays are and thus can not monitor the cache efficiently.

4.4 Application software

In this section, we discuss how programmers can write cryptographic code that is
not easy to exploit using side-channel attacks. The first obvious point is to have
solid memory safety. Memory corruption unfortunately can not be completely
eliminated. We suggest however using relatively memory-safe languages like
Rust and Go. We also suggest using machine verification to check memory
safety. Thorough testing using fuzzing and symbolic execution tools is also
important. Lastly, we recommend deploying all mitigation techniques including
CFI, ASLR and Stack protection as much as possible.

One way for software to mitigate side-channel attacks is to use a technique
called blinding. Blinding is a technique used where the application computes
a function for an encoded input without knowing the real input or the real
output. The client who gives the encoded input would get an encoded output
back that the client should be able to decode. In the case of RSA, we would be
blinding the exponent [4]. When we encrypt, we would add to make our new
exponent be e+rϕ(N), where e would be the encryption key, r a new randomly
generated value, and N is our modulus. To decrypt, one would calculate the
modular inverse of e + rϕ(N) to decrypt as normal. This would make the
square and multiply operations uncorrelated with the original input. However,
this also implies that the blinding component must also be secure and safe from
side-channels.

As noted above, spectre relies on an array that is cached which the victim
has to index into using a derivative of a target value. It also requires a victim
program to have a branch condition that is influenced by user input. We sug-
gest the following coding practices to reduce the risk of exploitation from these
attacks. First, never use a value tainted with the secret key to index to an array
the address of which the attacker could know. If there is a cipher-text to be
decrypted which can come from an adversary, make a copy of it before working
on it. Second, if possible at all don’t use key tainted values immediately after
branches. If you have to, put the key tainted value access as far from the entry
of the block as possible. This reduces the chance a speculative execution would

9

have operated on the tainted value before it is rolled back. Third never use a
user input or user input tainted value as a predicate in a branch, specifically
if just after the branch there are operations on the key. Finally, use machine-
checking to guarantee the memory safety, correctness and absence of timing
vulnerabilities in the cryptographic code. Tools like jasmin can assist in this
[jasmin].

5 Future work

A comprehensive compiler strategy to quantify the risk from side-channel at-
tacks as well as the relation between this risk and performance, allowing the
programmer to set a desired level of protection. Taking this to the extreme, we
envision a cryptographic domain specific language with an inbuilt verification
system to verify correctness, memory-safety and side-channel attack protection
as well as many of the compiler features we recommended above. Future research
should also explore hardware level defenses like better cache protocols and mem-
ory tagging. Additionally, operating system level defenses like security-aware
scheduling appear to be a promising avenue.

References

[1] Daniel G. Bobrow et al. “TENEX, a Paged Time Sharing System for the
PDP - 10”. In: Commun. ACM 15.3 (Mar. 1972), pp. 135–143. issn: 0001-
0782. doi: 10.1145/361268.361271. url: https://doi.org/10.1145/
361268.361271.

[2] Werner Koch. [Announce] GnuPG 1.4.13 released. 2012.

[3] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack. 2013.

[4] Jake Edge. “Breaking Libgcrypt RSA via a side channel”. In: (2017).

[5] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In: 40th IEEE Symposium on Security and Privacy (S&P’19). 2019.

[6] “The Secure Enclave, Apple Support”. In: (2021).

10

