
DAWK: A Robustness Improvement to Prio

David Wu
MIT

wudavidh@mit.edu

Kevin Chen
MIT

kschen@mit.edu

William Xu
MIT

williamx@mit.edu

Aneesh Gupta
MIT

aneeshg@mit.edu

Abstract

In an age where information privacy is becoming ever
more important, many data collection systems that preserve
individual privacy have been proposed. Prio [1] is one such
system that attempts to tackle this problem directly, and has
been implemented in many settings, from Mozilla Firefox to
smartphone COVID statistics aggregation.

However, the original Prio system relies on some rela-
tively strict assumptions that must hold for the system to
function properly. Through implementation and testing,
these assumptions have been empirically been shown to be
safe and viable in practice. Regardless, our group is inter-
ested in extending Prio to build in features that enable in-
creased robustness against faults that could occur the sys-
tem. The core of our approach comes from incorporating
Shamir’s Secret Sharing into Prio while preserving its core
features.

1. Background
In this section, we present a summary of Prio, its key

components, contributions, features, and constraints.

1.1. Prio

Prio [1] is a decentralized system for privacy-preserving
data aggregation. Given a small number of servers and
large number of clients, each of which with some secret
value xi, as long as a single server is honest, the Prio
servers are able to compute f(x1, · · · , xn) without leak-
ing almost anything about clients’ private data, other than
what the computed aggregate reveals. Unlike previous sys-
tems in this field, Prio is able to maintain correctness, ro-
bustness against malicious clients, privacy, and efficiency
all at the same time, provided that its conditions are met.
Specifically, Prio guarantees that if all servers are honest,
the servers can compute f(x1, · · · , xn) with exact correct-
ness, and, even with malicious clients, the scheme is robust
enough to still provide correctness of f(x1, · · · , xn) with
high probability. Additionally, if at least one server is hon-
est, the values of xi remain private and hidden from any

adversary. These properties are especially useful when con-
sidering Prio’s efficiency, as Prio is able to perform these
computations privately while imposing minimal amounts of
slowdown. Hence, when we modify the Prio scheme, we
want to preserve as many of these properties as possible
while relaxing the constraints on honest servers.

1.1.1 Prio secret-sharing scheme

Prio maintains client privacy by client data into randomized
shares that are sent to servers: more specifically, Prio uses
additive secret-sharing. Prio assumes all operations are per-
formed in a field Fp of size p, where p is a prime. Then to
split a value x into s shares, a client picks random integers
[x]1, · · · , [x]s such that x = Σi[x]i, and sends each share to
one of the s servers.

The linear nature of additive secret-sharing means that
servers can perform affine operations on shares without
communicating: for shares [x]i, [y]i and constants α, β, the
servers are able to compute [x]i + [y]i = [x + y]i and
a[x]i + b = [αx + β]i locally. Prio relies on this prop-
erty to aggregate data: each server maintains an additive ac-
cumulator value that sums the validated shares it receives.
Each server then publishes its accumulator value. Due to
the linearity of the secret-sharing scheme, the sum of the
accumulator values is equivalent to the sum of the clients’
secrets. Thus the servers are able to compute this aggregate
sum while maintaining client privacy.

Prio can also compute more complex statistical opera-
tions without major change to the accumulator process by
manipulating inputs: instead of a client simply sending
shares of its secret, it instead computes an encoding of its
secret, splits the encoded value into shares, and sends those
to servers. This encoding is chosen such that computing the
sum of the encoded shares is equivalent to computing the
desired statistic.

Using additive secret-sharing, we see that any subset of
up to s − 1 shares reveals nothing about the secret x. This
fact demonstrates the tension between privacy and fault-
tolerance in Prio’s secret-sharing scheme: the information-
theoretic guarantee that no information about x can be re-
covered from any s− 1 or less shares implies that the result

1

of affine operations on x cannot be recovered from the re-
sult of equivalent operations on its s−1 shares. This means
that all s servers must be honest and functional in order to
aggregate data.

Prio circumvents this problem by relying on the assump-
tion that servers are always honest and functional, reasoning
that real-world deployments would only need a small num-
ber of servers existing in fixed locations with known admin-
istrators, and thus server robustness and trust issues could
be handled outside of Prio itself. Our system strengthens
server fault tolerance by replacing additive secret-sharing
with a more robust scheme, as discussed in Section 3.

1.1.2 Prio verification scheme motivation

While Prio assumes no adversarial servers, a significant
portion of its design involves defending against adversarial
clients. Prio defines adversarial clients as those who submit
inputs that corrupt the overall system output. For example,
one natural area where this issue arises is voting applica-
tions. Say that users can cast at most 1 ballot for each candi-
date, meaning that each user should only be able to increase
a candidate’s vote count by at most 1. With no verification,
a malicious user could send an input that increases a candi-
date’s vote count by 100, overwhelming the data collected
from other users and thus corrupting the output.

Prio deals with this issue through its verification scheme.
As with many other privacy applications, Prio’s increased
privacy comes the cost of verification complexity: by na-
ture of secret-sharing, servers should not be able to glean
any information about client secrets based on the shares
they receive, so it follows that they should not have suffi-
cient information to check input validity on their own. This
setting – where we must verify the truth of a statement with-
out learning any other information about the statement it-
self – naturally lends itself to zero-knowledge proofs. Thus,
Prio introduces a new type of zero-knowledge proof: secret-
shared non-interactive proofs (SNIPs).

1.1.3 Prio verification scheme

Secret-shared non-interactive proof (SNIP) protocols in-
volve interactions between a single prover and multiple ver-
ifiers (client and multiple servers). The servers hold shares
[x]i, while the client holds the secret x = Σi[x]i. All par-
ties hold a predicate: an arithmetic circuit Valid. The client
must convince the servers that Valid(x) = 1 without leak-
ing information about x by sending a ”proof string” to each
server. The servers communicate upon receiving the proof
string, then determine whether Valid(x) = 1 or not. In this
section, we present a SNIP constructed for use in Prio. For
a more generalized SNIP construction, refer to Corrigan-
Gibbs and Boneh [1].

The original Prio scheme verifies that user inputs are of
the form {0, 1}∗. Let vi refer to the ith value of this n di-
mensional user input vector. Prio then defines two n-degree
polynomial functions f and g. The functions have proper-
ties as follows for all integer i between 1 and n:

f(i) = vi (1)
g(i) = vi − 1 (2)
h(i) = f(i)g(i) (3)

Since all vi ∈ (0, 1), this means h(i) = 0. These poly-
nomial functions form the basis for the verification scheme.

After a user generates their user vector v, they can easily
compute f, g, and h. They will then send their shares to
their respective servers, as well as the polynomial h.

Upon receiving h, both servers can check to make sure
that indeed h(i) = 0 for all relevant values of i. If this is
not the case, they reject the input. Next, the servers want
to check that f(x)g(x) = h(x), and one indirect way of
probabilistically doing that is by checking that equality for
some random value r. If f(r)g(r) = h(r) for some truly
random r, then there is a good chance that f(x)g(x) = h(x)
as long as the finite field is large enough.

To check this, assume we have generated some r that
all the servers have agreed on. Given their shares, each
server can perform LaGrange interpolation on their shares
alone. They will each compute their own f ′(x), g′(x) with
the properties specified above, but replacing vi with their
share of vi. Once they have these polynomials, they can just
plug in r to obtain their share of f(r), g(r) which, when
added to the share of f(r), g(r) from the other servers,
yields the true value of f(r), g(r). They can now compute
ĥ(r) = f(r) ·g(r) using a variant on the Beaver multi-party
computation protocol and compare it to h(r), the value ob-
tained from directly plugging in r to the provided h func-
tion.

If ĥ(r) = h(r), this means that the client likely did
not cheat and computed the h polynomial truthfully. The
servers thus accept the user input and add it to their own
accumulators. One thing to note is that since the polynomi-
als are evaluated at some random r, this does not leak any
information regarding the client secret.

1.2. Shamir’s Secret Sharing

Shamir’s Secret Sharing is a secret-sharing scheme that
is based on polynomial interpolation over finite fields. At its
core, this process relies on the fundamental property that k
points is enough to uniquely define a polynomial of degree
up to k−1. Given some secret value y0, this scheme allows
users to create n secret shares which require only k shares
to reconstruct the secret value.

Assuming this fundamental property of polynomials, we
can reconstruct the equation for a polynomial given k points

2

(xi, yi) by requiring the equation for the polynomial be ex-
actly yi whenever x = xi. To do this consider the following
summation:

f(x) =

k∑
i=1

yi

∏
j ̸=i(x− xj)∏
j ̸=i(xi − xj)

By convention, the secret y0 is usually set to y0 = f(0).
From the above equation, we observe that the function f
has the property that f(xi) = yi because all the terms with
the other yi will be 0 in the summation. Additionally, the
fractional term on the left will be equal to 1 for the yi term
of the summation. To obtain the secret value, users just need
to recover the equation of the polynomial and plug in 0.

To generate shares for the setup where we have n users
where any k can reconstruct the secret, generate a degree
k − 1 polynomial where f(0) is the secret value and find
n points (xi, yi) along that polynomial (f(0) cannot be a
share since that is the secret value).

2. DAWK Scheme
When we first analyzed the Prio system, we noticed that

it relied on a few key assumptions. One very important de-
tail is if a single server goes down completely, the infor-
mation stored in the other servers is useless, and all data is
irrecoverable (Section 1.1.1). All servers need to be func-
tional in order for Prio to work properly. The problem of a
single server going down and rendering Prio nonfunctional
seemed like a significant problem, one that we hope to be
able to address through our extension.

The key insight that we uncovered is that the origi-
nal Prio system breaks up information into non-redundant
shares. If a single share is lost, the secret value cannot be
recovered. However, we know that Shamir’s Secret Shar-
ing is a secret-sharing scheme that builds redundancy into
its shares. The idea is to use this to construct our shares
instead of constructing the additive shares proposed in the
original Prio system.

However, one immediate problem that we realized is that
Prio actually relies heavily on the fact that the shares add
up to the secret value in the finite field. This property of
the shares enables Prio to perform its verification scheme,
which ensures that shares are well-formed. Therefore, a
natural idea is to try and convert the shares produced by
Shamir’s Secret Sharing to shares with this key property,
allowing us to still utilize the properties of the original sys-
tem.

To do so, consider the following. Let y0 be the client se-
cret, and f be a degree-k− 1 polynomial where f(0) = y0.
Assign server i the share produced by Shamir’s Secret Shar-
ing at x = i. This means that each server is always respon-
sible for holding the share at a particular x value. Server i
thus knows their own secret share, (xi, yi), as well as the xi

for all the other servers. Taking a look at the equation for
calculating the secret value in Shamir’s Secret Sharing, we
immediately see that each server is capable of computing a
single term in the summation. If each of the servers per-
forms this computation on their shares, we can restore the
property that the shares add up the secret value.

f(0) =

k∑
i=1

yi

∏
j ̸=i −xj∏

j ̸=i(xi − xj)
(4)

y′i = yi

∏
j ̸=i −xj∏

j ̸=i(xi − xj)
(5)

f(0) =

k∑
i=1

y′i (6)

With this additive property restored, we have now suc-
cessfully created a scheme that has built in redundancy
for its shares while simultaneously preserving the additive
property that Prio relies on. If a server goes down, the re-
maining servers can still function by pooling their shares
together to simulate the Prio scheme, allowing them to re-
construct the data and compute meaningful statistics on it.

Moreover, given this redundancy in our shares, we can
also perform some consistency checks in our modified Prio
system. For example, consider the case where we have a
single malicious server that is broadcasting incorrect val-
ues during the verification scheme. In order to address this,
we can simply perform the verification scheme twice, each
time with a different subset of k online servers. If there is
a malicious server giving junk for verification, we will find
that the sum of shares for computing h(r) differs across the
two subsets.

By detecting this discrepancy, we can check more k-
subsets until a match with a previous subset is achieved.
We can be certain that the matching sum is the correct sum
with very high probability. Furthermore, we can then check
which subsets result in incorrect sums to detect and remove
malicious servers.

2.1. Verification

To ensure robustness, we use Shamir Secret Sharing on
all SNIP inputs. Prio depends on each server getting a
share of each of (f(0), g(0), h, a, b, c) from the clients. In-
stead, we have each client send a Shamir Secret Sharing
share with threshold k − 1 to each server. This means each
server has (f(0)i, g(0)i, hi, ai, bi, ci), where any k servers
can reconstruct the original values. Then prior to verifica-
tion, a subset of k functioning servers are randomly cho-
sen to perform the verification. These servers all com-
pute the Lagrange Interpolation on their six values to get

3

(f(0)′i, g(0)
′
i, h

′
i, a

′
i, b

′
i, c

′
i) such that

(f(0), g(0), h, a, b, c) =

k∑
i=1

(f(0)′i, g(0)
′
i, h

′
i, a

′
i, b

′
i, c

′
i)

, where the subscripted i represent the k chosen servers.
These modified shares are then used in the Prio verifica-
tion scheme to check whether the provided shares are valid.
Note that multiplications between f(r)i and r · g(r)i are
computed using Beaver’s multi-party computation proto-
col [2]. Then, other sets of servers with size k are checked
until all online servers have been used in verification. This
ensures that every server’s secret share has been verified.

The servers are not checked for adversarial possibilities
in the verification stage. The servers can follow one of
four possibilities: honest, honest but curious, faulty, or ma-
licious. If all servers are honest, then everything runs as
intended. If there are honest but curious servers, valida-
tion occurs properly as long as at least one of the chosen k
servers is honest. If a server is faulty, then it will not be se-
lected to perform the verification. Unfortunately, malicious
servers can impact whether a client’s value is verified.

However, both malicious clients and malicious servers
have their impact reduced due to randomness as long as they
are not cooperating. A malicious client may attempt to send
faulty shares of the verification inputs to some servers, but
since all online servers are verified, the malicious client’s
share will be rejected. A malicious server could make a
valid share not pass validation with 100% chance and any
share not pass validation with |F|−1

|F| probability if F is the
field used to perform the SNIP. We could attempt to catch
these malicious servers in the validation phase, but it is way
more performance intensive than trying to catch them in the
computation phase. This is due to the fact that comput-
ing SNIPS is more costly than aggregation. Thus we leave
catching malicious servers to the computation phase.

We must also consider the adversarial case where both a
malicious client and malicious server are working together.
While in the case where we analyze maliciousness sepa-
rately, it is essentially impossible for a malicious server to
validate a bad share (since the server must determine f(0),
g(0), and h(0) without outside help), here it is much eas-
ier. Due to optimizations put in place for Prio (specifically
the fixed r), DAWK cannot handle malicious client-server
communication without a significant hit to performance.

In fact, with this fixed r, neither Prio or DAWK can han-
dle malicious client and honest but curious server either.
This is because the honest and curious server can send the
fixed r to the client. Then, the client can choose f(x) and
h(x) that have zeros at x = r and the algorithm will return
that the client’s share is valid, no matter the value. Thus,
the DAWK scheme cannot handle malicious clients work-
ing with honest and curious servers.

A server can also fail during the validation scheme. This
can occur both naturally, or as a result of an adversarial tar-
geted attack. If a server fails, verification cannot go for-
ward as the interpolated shares are no longer valid since
verification requires k working servers. Thus, a new ran-
dom k sized subset of working servers is tried until a result
is achieved.

In general, to avoid unverified secret shares being used in
computation, we run the verification on all online servers.
However, if a server goes down during the verification
phase, then comes back online afterward, its unverified se-
cret share could be used in the computation, which could
contaminate the data. To avoid this scenario, we would only
mark that server as back online once computation on the
shares has completed.

3. Analysis

The three main properties discussed in the Prio paper
were robustness, performance, and privacy. The system
maintains high privacy and performance, but stated they did
not wish to improve robustness since that would result in
much worse privacy and performance. Here, we look at
how much the robustness, performance, and privacy actu-
ally were impacted by the DAWK modification.

3.1. Robustness

Unlike Prio, where a single compromised or unavailable
server would break the algorithm, DAWK is robust against
multiple servers going down. Specifically, if DAWK is be-
ing run on n servers, s minimum of n− k + 1 servers need
to fail in order for DAWK to be unable to function. This is
much better robustness than found in Prio.

Furthermore, DAWK is able to detect and remove ma-
licious servers. By verifying aggregation results, DAWK
can find malicious servers and remove them from the list of
viable servers. Keeping this work in the aggregation stage
allows the detection process to occur quicker and more re-
liably than in the validation stages.

3.2. Performance

In our modified scheme, servers need to perform a few
computations in order to convert the new Shamir’s secret
shares to the Prio shares with the additive property. To do
these computations, the servers just need to multiply O(k)
values which does not add significant overhead compared
to the previous Prio system.

After performing these transformations on the new
shares, we convert all the shares to the original Prio system,
meaning that all the work going forward is exactly the same
as the Prio system. Critically, this means that the amount of
communication cost incurred between servers is still just a
constant amount. Since performing Lagrange interpolation

4

already requires O(k) work, this additional work per server
is not significant in the overall scheme.

If we include the modification that enables us to perform
consistency checking for malicious servers, this increases
the cost of communication since the verification procedure
will need to be run at least twice. If there are no malicious
servers, we can stop here and incur no more verification
costs.

3.3. Privacy

Since we are able to convert the shares to shares with the
additive property, we are able to ensure that we can preserve
all the original privacy guarantees of Prio. Indeed, an adver-
sarial actor still needs to access k servers to obtain informa-
tion about the individual results. The difference with our
approach is that since there are more than k servers, there
are more possible servers susceptible to being controlled by
an adversary. This could be a real downside if servers went
malicious randomly. However unlike servers failing, it is
unlikely that a server turns malicious without an outside ac-
tor. Thus, an outside actor would need to gain control over
k servers, meaning that the work needed to be done by an
adversary is the same as in Prio.

Thus, we believe the robustness against a single random
failure of a server is more important than privacy in a tar-
geted attack on k or more servers. Since so many servers
need to be attacked and malicious servers can be reported
in the aggregation stage, we believe such an attack would
be detected in time to preserve privacy. Furthermore, if we
wanted to be even more secure against malicious servers,
we could implement other linear secret-sharing multi-party
communication methods like MP-SPDZ [2]. However, we
believe our approach to detecting malicious servers is suffi-
cient.

4. Conclusion

In this paper, our group was able to produce a robustness
extension to the Prio system. By leveraging redundancy in
the Shamir’s Secret Sharing scheme, we are able to improve
the robustness of the original Prio scheme. There are many
benefits to having this extension, such as the ability to detect
malicious servers, and the ability to continue functioning in
the presence of server outages.

However, we also note that DAWK makes some tradeoffs
when providing additional robustness guarantees. Most no-
tably, these tradeoffs come in the form of increased commu-
nication and computational costs. The servers are required
to perform more computations and communicate more in
this scheme compared to the original Prio system, which
was able to guarantee privacy without incurring much slow-
down.

References
[1] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, ro-

bust, and scalable computation of aggregate statistics. In 14th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 259–282, Boston, MA, Mar.
2017. USENIX Association. 1, 2

[2] Marcel Keller. MP-SPDZ: A Versatile Framework for Multi-
Party Computation, page 1575–1590. Association for Com-
puting Machinery, New York, NY, USA, 2020. 4, 5

5

	. Background
	. Prio
	Prio secret-sharing scheme
	Prio verification scheme motivation
	Prio verification scheme

	. Shamir's Secret Sharing

	. DAWK Scheme
	. Verification

	. Analysis
	. Robustness
	. Performance
	. Privacy

	. Conclusion

