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1 INTRODUCTION 

Low-power devices are everywhere in our daily lives — from healthcare gadgets to digital 

assistants to home devices. Since these devices tend to have our precious private information, it 

is crucial to provide a reasonable amount of security given the low power environments these 

devices work in. On these devices, standard encryption schemes do not work very well for all the 

applications due to possible limitations in both the hardware (i.e., memory) and software (i.e., 

processor speed). For example, if there is a video stream or a large stream of data which needs 

to be secured in a short amount of time, low-power devices will have trouble since they do not 

have as much computing power as smartphones and laptops. In a low-power environment, 

tradeoffs are made which leads to a lower security as the power becomes more limited. For 

instance, smaller key sizes are preferred in such an environment but this may reduce the level of 

security provided to the system. Thus, the goal of lightweight cryptography is to use less 

computing power, less memory or less power while providing some sense of security.  

From a software point of view, lightweight devices may be bound by memory size, processor 

speed and latency. In terms of hardware, lightweight devices may be bound by area, throughput 

and power consumption. While working in these environments, light-weight cryptographic 

algorithms that are able to provide a decent amount of security in various types of applications 

are needed. Figure 1 shows examples of devices of various computational ability. 

 

Figure 1: Range of computational abilities over various hardware devices. The red dotted box 
denotes the “lightweight” devices, while the blue dotted box denotes the non-lightweight devices. 

[2] 
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As there are many devices and various different software and hardware constraints across 

various low-compute devices, there is a need to standardize software and hardware in 

lightweight cryptography. Noticing this need for standard, the National Institute of Standards 

and Technology (NIST) — a government agency responsible for measuring scientific 

advancement and industrial innovation — created a way to benchmark and standardize 

lightweight cryptographic algorithms that are developed for low-compute environments and 

started accepting algorithms according to certain requirements [10]. Following this vision, NIST 

announced that it is accepting algorithms to be considered for lightweight cryptography 

standards. NIST received 56 algorithms in total and after two rounds, in 2021, ten algorithms 

(Ascon, Elephant, GIFT-COFB, etc.) were finalized. It is worth noting that the 5th Lightweight 

Cryptography Workshop is being held virtually from May 9th to May 11st [7]. 

In a 2015 NIST workshop on lightweight cryptography, Dan Shumow, a researcher in the 

Microsoft Research Security and Cryptography Group, claimed with some limited evidence that 

current cryptographic standards and algorithms are sufficient enough for software applications 

on hardware with the computation power at or above that of a microcontroller [2]. He started 

his presentation by talking about what devices exactly qualify as low-power and these devices 

are already powerful enough in terms of software aspects. These devices are possibly limited by 

their hardware and new standards should apply to hardware only.  

In this project, we sought to evaluate his claims by measuring the throughput of various 

functions (such as hashing, encryption, and decryption) across a variety of standard and 

lightweight cryptographic algorithms on both a Raspberry Pi and an Arduino Teensy 3.2. After 

experimenting, we concluded that Arduino and Raspberry Pi do not need lightweight 

cryptography for many standard applications but would benefit from lightweight cryptography in 

certain use cases, such as video recording. We then discuss the need for standards in lightweight 

cryptography, as well as the different areas for optimization in both hardware and software. 

2 BACKGROUND 

In this section, we consider standard encryption algorithms and hash functions, as well as several 

candidates for NIST’s lightweight cryptography challenge. We will discuss each of these 

algorithms with descriptions of each algorithm, as well as their use cases. 

The table below describes the most commonly used encryption algorithms and hash functions. 

Encryption algorithms like AES and ChaCha have multiple rounds of operations and provide a 

very high level of security. ChaCha is more suitable in mobile devices and more CPU friendly. 

Hash functions are an essential part of randomization in cryptography and the most popular 

hash functions are SHA-3 and SHA-2. Even though SHA-3 is more secure, it is not widely used due 

to its slow performance in software [1]. 
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Algorithm Description 

AES Block cipher encryption algorithm which is a substitution-
permutation network and its secure level is highly dependent on its 
key size and number of rounds 

ChaCha Stream cipher encryption algorithm whose round operations only 
consist of modular addition, rotation and xor 

Speck Block cipher encryption algorithm which has been optimized for 
performance in software implementations and works in the same 
way as ChaCha 

SHA-2 Family of hash functions including SHA-224, SHA-256, SHA-384, 
SHA-512, SHA-512/224, SHA-512/256 and is built using the Merkle-
Damgard construction 

SHA-3 Hash function which is built by using “sponge construction”. 
Sponge construction is a function which takes a bit stream of any 
length and outputs a bit stream of any desired length 

Table 1: Examples of standard cryptographic algorithms [17, 18, 19] 

Even though these algorithms work great in high-power devices (e.g., portable computers, 

smartphones), there are certain prohibitive constraints in low-power environments, such as 

memory limitation, timing, power consumption, and gate equivalents (i.e., hardware area). For 

instance, ChaCha and SHA-2 make extensive use of modular additions, which is not the best 

choice for lightweight hardware implementations. 

As part of the NIST cryptographic competition, there were 10 finalist cryptographic algorithms 

that NIST recognized. Table 2 briefly describes each algorithm, its purpose, and what software or 

hardware aspects it seeks to optimize. 

Algorithm Description Characteristics 

Romulus Tweakable block cipher High efficiency on short 
messages, Less area 

PHOTON-Beetle Authenticated encryption and 
Sponge-based mode hashing 

Flexible, High efficiency on 
short messages 

ISAP Sponge-based authenticated 
encryption 

Robust against side channel 
attacks 

Grain Stream Cipher Good throughput, low energy 
consumption, flexible 
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Dumbo Permutation-based authenticated 
encryption 

Has some issues on security, 
easy to implement, can be 
parallelized 

TinyJAMBU Block cipher Less area, can be computed in 
parallel 

Schwaemm Sponge-based cipher Small state size, fast and can 
be boosted with parallelism 

Ascon Block cipher Good speed, Less area, High 
efficiency on short messages, 
Robust 

GIFT-COFB Block cipher High efficiency on short 
messages, small state size, 
fast 

Xoodyak Hashing, Encryption, MAC 
computation and Authenticated 
encryption 

Robust against side channel 
attacks, small state size, 
flexible, secure against multi-
target attacks 

Table 2: Examples of lightweight cryptographic algorithms. [16] 

In this project, we examined both the standard non lightweight and lightweight cryptographic 

algorithms. We will next discuss how we tested these algorithms across two microcontrollers — 

a Raspberry Pi and Arduino Teensy. 

3 METHODS 

3.1 MICROCONTROLLER CHOICE 
For our experiments we decided to test standard and lightweight cryptography algorithms on 

two popular microcontrollers: a Raspberry Pi Zero W and an Arduino Teensy 3.2. We chose these 

two systems because Arduino and Raspberry Pi’s are widely used and the two we selected are at 

physically small design points, and thus lightweight cryptography may be more applicable there. 

The Raspberry Pi Zero W contains a 1 GHz single core ARMv6 CPU (BCM2835), 512MB of RAM 

802.11n WiFi and Bluetooth 4.0. Although it is physically very small, it is very much a capable 

machine [12]. The Arduino Teensy 3.2 features a 72 MHz Cortex-M4 CPU, 64 KB of RAM and 256 

KB of flash memory [13]. Although the Teensy is only a bit smaller physically than the Raspberry 

Pi Zero W, it is not as powerful, and therefore should, in theory, be more suited to utilizing 

lightweight cryptography algorithms.  
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3.2 CRYPTOGRAPHY LIBRARIES 
There were multiple options for various cryptographic libraries we could use. Raspberry Pi’s have 

the capability to run the Python programming language, and thus can utilize the high-level 

“cryptography” library that is easy and flexible to use. However, since we are considering 

lightweight it is more appropriate to select optimized implementations written in lower level 

languages such as C/C++ and Assembly. To this end we found Rhys Weatherly's implementation 

of cryptographic libraries for the Arduino. This included standard, reduced memory, and 

lightweight implementations, and a variety of routines included AEAD, hashing, authentication 

and public key cryptography. For this paper, we concentrated on AEAD and hashing as we could 

collect more data and compare more implementations in those categories. 

However, this library was not adapted for the Raspberry Pi. Since Arduino code is simply C++ 

with a few additional methods and classes written, we decided to try to adapt the Arduino code 

to execute on the Raspberry Pi. To this end we found and utilized the piduino C++ library which 

allows usage of the digital IO on the Raspberry Pi in the same way as the Arduino, and also 

defines the utility functions for things like measuring elapsed time and printing outputs that the 

Arduino has defined. Thus using the piduino library we could compile cryptographic tests that 

utilize the Arduino library on the Raspberry Pi itself, and execute them with no/minimal 

overhead. 

3.3 METRICS COLLECTED 
The main metrics we tried to collect are timing results. These include average time to encrypt 

and decrypt (per byte) and key setup times for the AEAD algorithms. For the hashing algorithms, 

this includes hashing throughput (per byte). We explored collecting data on other metrics such 

as temperature, CPU utilization and memory utilization. This data collection was only possible on 

the Raspberry Pi which runs a Linux environment, so it was possible to run other processes in the 

background to collect data for these metrics. 

However, we quickly found out that these metrics either had data that was not meaningful or 

was difficult to collect. For example, with temperature, the Raspberry Pi was able to measure the 

overall CPU temperature up to one decimal point in Celsius. The purpose was to test how much 

stress a specific cryptographic workload had on the system. However, with successive runs, the 

temperature would just keep increasing, and eventually reach a peak level when the rate of heat 

dissipation (through the heat sink) matched the rate of heat generation. Thus, there was no 

guarantee that the relative increases in temperature between successive runs would be 

comparable, and the temperature was highly related to the up time of the processor. 

For CPU utilization and memory utilization, we realized that in order to properly measure this, 

we would need to measure CPU utilization and memory usage for every single individual 

subroutine. For example, it didn’t make sense to measure peak memory usage for key setup and 

encryption combined as they both are different routines with drastically different runtimes and 

function in most algorithms. Thus to measure this we either needed to create dozens of separate 



8 
 

executables and profile each individual, or use an actual profiler toolset (perf, valgrind, etc.). This 

was not necessary given the memory usage in the Raspberry Pi was far lower than the capacity 

and a few runs indicated that CPU utilization was mostly the same. We assume this is because 

the algorithms were mostly compute bottlenecked as opposed to memory bottlenecked or 

bottlenecked by inability to parallelize well on small devices. 

Finally, we also tried to look at various compilation modes. As discussed previously, lightweight 

applications have many requirements, including reducing the program size due to limited 

storage, and also increasing the program speed due to limited compute. By default, the compiler 

for the Teensy 3.1/3.2 utilizes the “-Os” compilation flag to optimize for reducing program size. 

We attempted to optimize for program performance with “-O3”, but we found little to no 

differences and results were almost exactly the same. Weatherly’s cryptographic algorithm 

implementations were already written in a very optimized manner, and some included assembly 

code, and different optimization schemes did not make significant differences. 

Please see the end of the paper for a link to our Github code. 

4 RESULTS 

In this section, we illustrate the results of our experiments on the Raspberry Pi and Arduino 

Teensy. 

First, we considered the various different authenticated encryption with associated data (AEAD) 

schemes, including both standard non-lightweight and lightweight cryptography algorithms. 

These non-lightweight schemes include AES-128-ECB, ChaChaPoly, GCM AES-128, GCM-Speck-

256, and GCM-SpeckTiny-256. The lightweight schemes include Acorn-128 and ASCON-128. 

Figure 2 shows the operation throughputs (operations/second) for key setup across each of 

these schemes, while Figure 3 shows the average throughput of encryption and decryption. As 

expected, the Raspberry Pi performs these operations at a faster rate than the Arduino Teensy. 

While Acorn-128 and ASCON-128 are regarded as lightweight algorithms, only the Acorn-128 has 

a significantly higher throughput in encryption and decryption. As we will discuss later, these 

algorithms are among other lightweight cryptographic algorithms that aim to optimize different 

design considerations, one of which is execution throughput. 
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Figure 2: Key Setup Times in Raspberry Pi and Arduino Teensy for AEAD 

 

Figure 3: Average Encryption-Decryption Throughputs (in Megabytes/Sec) in Raspberry Pi and 
Arduino Teensy for AEAD 

Next, we considered several hashing functions, of which SHA256 is a non-lightweight hashing 

function, while the rest are among the lightweight hashing function submissions to the NIST 

lightweight cryptography challenge. Figure 4 shows these results across both the Raspberry Pi 

and Arduino Teensy. Notice that SHA256 has a higher throughput than the lightweight hashing 

functions that were considered. Once again, we observe that the Raspberry Pi has a faster 

throughput than the Arduino Teensy in the hashing functions. 
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Figure 4: Average Hashing Throughputs (in Megabytes/Sec) for both Lightweight and 
Nonlightweight Schemes in Raspberry Pi and Arduino Teensy 

Lastly, we considered several lightweight cryptography algorithms, most of which are 

submissions to the NIST lightweight cryptography challenge. Figure 5 shows the ratio between 

the throughputs of encryption between the encryption of 128-byte packets and the encryption 

of 16-byte packets. As we expect, the encryption of 128-byte packets has a higher throughput 

than the encryption of 16-byte packets for each of these lightweight cryptography algorithms. 

Figure 6 shows the average throughput of encryption and decryption of 128-byte packets on the 

Raspberry Pi and Arduino Teensy. As we discuss next, these throughputs for both devices are on 

the order of ~1 MB/sec, which does not pose a significant bottleneck for common usage of the 

Raspberry Pi and Arduino Teensy. 
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Figure 5: Encryption Throughput Ratios in Raspberry Pi and Arduino Teensy for NIST Lightweight 
Cryptography Algorithms 

 

Figure 6: Average Encryption-Decryption Throughputs (in Megabytes/Sec) for 128-Byte packets in 
Raspberry Pi and Arduino Teensy for NIST Lightweight Cryptography Algorithms 

5 DISCUSSION 

In the previous section, we showed the results of experiments across both the Raspberry Pi and 

Arduino Teensy. As anticipated, in all cases, the Raspberry Pi actually does much better than the 

Arduino Teensy in the throughput and operations per second. But in both cases, neither the 

Raspberry Pi and Arduino Teensy always need the use of lightweight cryptography algorithms. 

Moreover, these algorithms were shown to be able to handle the throughput of non-lightweight 
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cryptography algorithms, as seen in the plots. However, in some specific use cases that may 

need to handle high throughput, such as video recording on an Arduino, video data would be 

streamed at 1-6 MBps [15], while AES encryption on the Arduino can take 0.2 MBps, which can 

be a bottleneck. On the other hand, SCHWAEMM has a throughput of 0.98 MBps, which is less of 

a bottleneck. 

As we now consider the need for lightweight cryptography, we seek to understand how these 

methods are standardized and optimized for different needs.  

As researchers in the field seek to assess each cryptography algorithm, there is a need to 

standardize the algorithms using various benchmarks. Many of the algorithms claimed to be 

lightweight, such as Grain-128AEAD, which claimed in their paper to be 3.8 times faster than 

AES-GCM [11]. However, when collecting results on Weatherly’s implementation, we found that 

many algorithms, including Grain, were actually slower than AES-GCM. These results were 

surprising for us and we sought to understand why this was the case. 

One important factor we found is that the results are highly implementation-dependent. When 

reading some of the finalist papers from the NIST lightweight cryptography challenge, it seems 

that many of them utilize cryptography implementations from FELICS (Fair Evaluation of 

Lightweight Cryptographic Systems) [8]. However, Weatherly’s algorithm for AES performs 

significantly faster than the FELICS version of AES. Based on data collected by NIST, the FELICS 

implementation is ~2.5 smaller in program size compared to Weatherly’s implementation, but 

also ~4.0 times slower than Weatherly’s version. Thus when lightweight cryptographic 

algorithms are compared to the optimized AES in Weatherly’s code, it turns out to actually be 

slower, while still being faster than the FELICS version [6]. 

 Program Size (Bytes) Cycles to Encrypt 1 Byte 

Implementation A (felics-v2) 3272 16824 

Implementation B (rweather) 8096 4156 

Table 3: Implementation statistics for AES128-GCM [6] 

Furthermore, we find that not all of the lightweight cryptography algorithms are optimal on all 

lightweight compute systems, and were not necessarily designed with optimizing the same 

metrics. We researched further and found data collected regarding the performance of 

lightweight cryptographic algorithms on the NIST challenge on FPGAs. For example, in a plot 

from the paper below, we see a clear relationship between average throughput and energy per 

bit for various algorithms submitted to the NIST competition. While ASCON has the highest 

throughput on the FPGA, SCHWAEMM has the highest throughput on the Arduino Teensy, and 

the performances differ by large factors. Meanwhile the Xoodyak algorithm performs well on the 

Teensy and the FPGA, but is optimal on neither system [14]. 
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Figure 7: Energy per bit vs Average Throughput for Llightweight algorithms on an FPGA [14] 

From our analyses we see that lightweight cryptography is highly necessary for future 

applications. This shows that when creating lightweight cryptography standards, the compute 

architecture needs to be taken into consideration, as well as which factors an algorithm standard 

is trying to optimize (such as program size, throughput, area and energy). While some algorithms 

like Xoodyak appear to work well on multiple systems, if the focus is maximizing throughput or 

any other metric, different standards will likely be needed for different architectures. Since 

performance changes drastically with different implementations based on various optimization 

choices, this may require multiple standards as well (to account for each optimal choice). Both 

these reasons indicate that standardization may not be a good idea. 

Many algorithms have been proposed that are lightweight in the sense of utilizing low memory, 

however they are very slow in implementation, and this indicates that some level of 

standardization is needed in order to ensure applications in the future have a minimum level of 

performance on lightweight devices. 

Our conclusion is that lightweight cryptography should be standardized but not as a hard rule 

but more as a recommendation for a good algorithm that is performant on most architectures 

and has a decently low program size, although it may not be optimal for most cases. However, if 

performance is a strong bottleneck or high security is needed for example, developers/engineers 

should be encouraged to select their own algorithm, and not necessarily stick to a standard. 
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6 FUTURE DIRECTIONS 

In the future, this project could be extended to measure both the CPU utilization and memory 

utilization, as other papers do not seem to measure these quantities. As noted, in our current 

software setup, this would have required several hundreds of executables to run each of the 

individual cryptography tests, thus requiring significantly more time for data collection. However, 

with some modifications to the software, this may be possible to collect in the future. 

Additionally, beyond the scope of this project, we could have tested on different hardware, 

including FPGAs and ASICs. Of course, for these hardware circuits, we would need to program 

each of these methods in some hardware description language. As previously noted, these 

hardware circuits provide some value for faster processing but lower memory availability, and 

can, thus, serve as another hardware baseline for comparison of different lightweight 

cryptographic algorithms. 
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