Improving the SecureDNA System

Max Langenkamp, Andrea Lin, Alex Quach, Grace Hu

Abstract

One of the greatest threats to human civilization today
is an engineered pandemic. This risk has existed for many
decades, but is rising with advances (and the lack of pro-
tective measures) in DNA synthesis. SecureDNA is a system
that provides protective measures against such a scenario
by privately and screening DNA orders against a database
of known dangerous sequences. In this paper, we begin
by surveying SecureDNA, a system that allows secure and
private screening of DNA orders. After explicitly describ-
ing its threat model, we propose two efficient extensions
to the SecureDNA system: key-holder authentication and
database proof of membership. We finish by considering
three promising features to further strengthen the security
of SecureDNA.

1. Introduction

In March of 1995, the doomsday cult Aum Shinrikyu re-
leased several canisters of a nerve agent in subway stations
surrounding the Japanese parliament [4]. Fortunately, their
plan failed: less than a hundred people had persistent dam-
age from the bioweapon and the perpetrators were caught.
However, subsquent investigations revealed that a scientist
with a graduate degree in biology had been part of Aum
Shinrikyu had tried to get ahold of infectious viruses such
as Ebola, which have far greater capacity for harm than
nerve agents. Because of advances in rapid DNA synthe-
sis, it is now faster and cheaper than ever before to acquire
dangerous sequences of DNA. The risks to human civiliza-
tion from bioterrorist attacks has never been higher.

SecureDNA is a cryptographic system which aims to ad-
dress this concern by providing platform for DNA synthesis
companies to privately and securely screen DNA orders [1].
Once a customer (e.g., a biology lab) places a sequence
order with the client (i.e., a DNA sequencing company),
the client interacts with key-holding servers to form an en-
crypted query that then gets checked against a database of
encrypted queries. This particular design meets several con-
straints around performance, privacy, and resistance to a
range of attack vectors.

The contributions of this paper are fourfold. First, we

provide a succinct explanation of the SecureDNA system
and its threat model. Second, we detail two modifications
to significantly strengthen the threat model: key-holder au-
thentication and database proof of membership. Third, we
provide performance analysis to argue that the both of our
solutions require low overhead. Finally, we explore three
more speculative extensions which we believe will further
strengthen SecureDNA.

2. SecureDNA Overview

There are 5 main parties involved in SecureDNA:

e Customer: wants to synthesize DNA. Sends DNA se-
quence order to the client.

* Client: queries database with encrypted DNA order.
Synthesizes DNA for customer if order approved.

* Database Server: tells client whether a given en-
crypted order is dangerous. Contained within a dis-
tributed network of cloud servers that store hashed
DNA sequences.

e Key-holders: receive encrypted DNA order from
client, further transform order, and send it back.

* Administrator: responsible for adding sequences to the
database.

The system is subject to three particular constraints:

1. Database queries must be rate-limited. Adversaries
cannot determine database contents by repeatedly
querying.

2. Database contents must be kept private and cannot be
recoverable. A computationally bounded adversary
should not be able to recover the sequences in the
database.

3. Customer query must be kept private. Guaranteeing
privacy of customers is necessary for widespread adop-
tion.

SecureDNA processes DNA synthesis orders by break-
ing a requested sequence into 40-50bp fragments and then
comparing the fragments to a database of known dangerous
fragments. If any sequence from the order matches, then
the order will not be synthesized. Specifically, SecureDNA
employs the following basic screening protocol:

1. Customer sends client a request to synthesize sequence
x.

2. Client chooses a random /3 and creates H(z)? before
sending it to ¢t/n total key-holders. Each individual
key-holder creates H (x)%* and sends (H (z)%%, \;)
back to the client.

3. The client does a calculation to get the hash of z:

¢
falw) = ([H(z)) (M
i=1
where d = 3~ 'mod(q)
4. The client sends f, () to the server, which checks if
is in the database using binary search.

5. Server responds with 0 or 1 depending on whether the
sequence is stored in the database.

S

G
Keyholders -

—ly

Administrator

Database
Servers

gl

Customer

Figure 1. Basic Screening Protocol Overview

For simplicity, we are focusing on the protocol for
screening DNA, rather than the initalization protocol. For
a more detailed overview, we point the reader to the origi-
nal SecureDNA paper [1].

The proposed SecureDNA system successfully ad-
dresses each of the constraints. The existence of key-
holders allow for queries to be rate limited. Storing the dis-
tributed oblivious pseudorandom function (DOPRF) hashes
ensures that the sequences are computationally indistin-
guishable given the Decisional Diffie-Hellman and random
oracle assumptions. Finally, the DOPRF also ensures cus-
tomer privacy is maintained because sequences are con-
cealed even before being sent to key-holders.

In the next section, we will explicitly discuss the Se-
cureDNA threat model, and how it can be extended.

3. Extending the SecureDNA Threat Model

The current SecureDNA threat model assumes that key-
holders, clients, and database servers will always provide
honest responses. However, as the system grows in scale,
the likelihood of a compromised party also increases.

There are two attacks we are concerned about outside of
the current threat model: Key-holder response corruption

Parties Current System | New System New Attack Considered
SecureDNA

Database server Database Connection Hijacking
(false replies)

Key holders Keyholder Server Corruption
(fake keys)

Client N/A

Customer N/A

Administrator N/A

Figure 2. Differences in an adversary’s capabilities in current vs
new threat model. Green indicates the adversary is always trusted,
yellow and red means the player may be malicious/corrupt.

and Database connection hijacking. We will elaborate on
each of these in their respective sections.

In the next section, we propose two changes to relax the
threat model. key-holder authentication removes the need
to trust key-holders, database membership proofs allow the
client to verify database responses. In the last section, we
will explore more speculative approaches to further enhance
the security of our system.

3.1. Threat scenarios

Database Connection Hijacking: The database pro-
vides the answer for whether a DNA fragment is dangerous
or not by checking for set membership. If the client’s
query is in the database, then the DNA synthesis order is
dangerous. If the client’s query is not in the database, then
the DNA synthesis order is safe. However, a sophisticated
man-in-the-middle attack may be able to modify the
response to one or more of the distributed databases. The
adversary can then return an arbitrary response, potentially
allowing the synthesis of a dangerous sequence.

Key-holder Server Corruption: The key-holders
must provide the correct keys for the secret sharing to
work to generate the hash of the client’s query. However,
the operations of one of the key-holders may have been
corrupted. Since there is no checksum in place, however,
there is no way for any parties to know that the query
encryption has been corrupted. In this case, the database
would almost certainly give permission for synthesis. In
this way, an adversary could also corrupt a key-holder
server when they want to synthesize a dangerous sequence.

4. SecureDNA Extensions
4.1. Database Membership Proof

The current SecureDNA model relies upon trusting the
database’s answer without proof, which fails if the database
is hijacked. We can remove this assumption by requir-

ing the database to provide a proof of membership/non-
membership alongside each query.

There are two reasons for requiring the database to pro-
vide proof. First, the DNA may be compromised by an ad-
versary. Second, the customer may demand proof that they
sequence is dangerous. Our system proposes a method for
the database to provide proof that it is telling the truth with-
out revealing information hazards. That is, the database
should be able to provide proof of set membership or set
non-membership without revealing the entire database.

4.1.1 Protocol

We reduce the problem to authenticating a dictionary. Each
dangerous sequence is a key in the dictionary, and the value
is the sequence itself.

The data structure we propose for this is a Prefix-Merkle
trie (PMT). This is also known as a Patricia-Merkle trie.
Figure 3 provides a concrete example of such a trie.

Figure 3. Prefix-Merkle Trie example

Setup. The database adds each dangerous sequence to the
dictionary as a key, and its corresponding value is also the
sequence. The database then constructs a Patricia-Merkle
trie from this dictionary. Each key in the dictionary is con-
verted to a binary number, and the hash of the value is stored
at a leaf node. Each digit in the binary number corresponds
to which branch the element takes. O corresponds to tak-
ing the left path, and 1 corresponds to taking the right path.
Now, every parent node is the hash of the concatenation of
its two children. If a parent node only has one child, the par-
ent is a concatenation of its single child node and 0. Finally,
the database publishes the root hash.

Membership proofs. If the client provides a sequence x
and the database sees that x is a dangerous sequence, then

the database provides a membership proof. This member-
ship proof is the audit path for z in the Patricia-Merkle trie.
The audit path lists the sibling to each node on the path from
the leaf node corresponding to up to but not including the
root node.

To verify the proof, the client checks that hashing the
concatenation of H () and its sibling, and then the hash of
that and its sibling, all the way up to the children of the root
node, is equal to the root hash published by the database.

For example, for the database in Figure 3, to prove that
1110 is in the trie, the database provides the following audit
path: (L/R = Left/Right node) R:0,L:0,L:H(H(0,1),0),L:0.

Non-membership proofs. If the client provides a se-
quence z and the database checks that x is safe, then the
database provides a non-membership proof. This non-
membership proof is also the audit path for « in the Patricia-
Merkle tree, where «’s leaf node may hold the value 0, or =
is not in the tree at all.

In the first case, where z’s leaf node stores 0, then
the database provides the same proof for x as in the non-
membership proof. To verify, the client checks that hashing
the concatenation of 0 and x’s sibling, and then the hash of
that and its sibling, all the way up to the children of the root
node, is equal to the root hash published by the database.

In the second case, if z is not a key in the trie, then some
prefix of x is a key in the tree and the prefix’s leaf node
stores 0. Then, the database provides the audit path for the
prefix, and the client verifies that the prefix is indeed a prefix
of z, and then performs the same verification of the audit
path for the prefix.

Next we will argue that the PMT provides membership
proofs without significant costs to performance.

4.1.2 Performance Analysis

Setup. The setup has to happen only once and is thus a
constant cost.

Membership proofs. Assuming that the hash function
maps values to 256-bit numbers, since the tree is 256 layers
deep, proof of membership is constant time. In the case of
every query, value of 256 neighboring nodes will need to be
provided. Since these are calculated in advance during the
setup, proof of membership uses constant time.

Non-membership proofs. Proof of non-membership is
also constant time. At worst case, the proof requires pro-
viding 256 neighboring nodes, but for many cases, the proof
may be shorter if a prefix of the query has value O in the trie.

4.2. Key-holder Verification

We can remove the need to trust key-holders by verify-
ing their outputs. SecureDNA estimates the need to handle
10'® transactions per year by 2029 [1]. Many key-holder
servers are required to make sure the SecureDNA system
can continue to operate in the face of such large demand.
However, with a growing number of servers, there is in-
creased risk of adversarial or corrupt key holders. Naturally,
our system would want to increase the number of total key-
holders, n. To insure a consistent level of security, it would
make sense also to increase the number of key-holders, ¢,
required to perform the DOPRE. We suggest a proportional
scheme, where ¢ should be a certain percent of the number
of the n total shares, since the security parameter is depen-
dent on compromising ¢ key-holders.

However, since the (¢,n)-DOPRF requires all ¢ key-
holders to provide valid values for the DOPRF to be suc-
cessful, any single compromised key-holder can impede the
verification process for a transaction. Compromised key-
holder servers can be either corrupt or adversarial. This can
be used to allow the synthesis of dangerous sequences by
leading them to be falsely considered as safe. This prob-
lem of adversarial or accidental failure and bottlenecking
the network becomes a larger problem with scale.

4.2.1 Protocol

We propose a scheme where the database server checks the
key-holders.

Setup of Database

(a) Since we need a positive hit within the database to en-
sure that the DOPRF function is working correctly,
we need to input a dummy entry into the database
server. This can be during the initial setup of the
database server (or at some point thereafter, when we
can be assured that the DOPREF is correct). Let us
call the message and DOPRF hash of the message
(that is input into the database server) Zqymm, and
Hpoprrr(Zdummy). respectively.

Initialization of Round

(b) Whenever keys are generated or refreshed, the
database server samples random /3.

(¢) The database server sends H (xdummy)ﬁ to each of the
key-holders, where H is a hash function.

(d) The database server receives H (zdummy)ﬁ"‘i from
each key-holder ¢. It also stores each H (:vdummy)ﬂo‘i
for this key period.

(e) The database server confirms that the completed
DOPRF(4ummy) matches an entry in the database
by calculating Equation 2. If not, the server encounters
an invalid hash, and jumps to (g).

Recurring Round

(f) The database continually resends H (:z:dummy)ﬁ to
each of the key-holders and checks the result against
the stored H (xdummy)ﬁai to ensure that the returned
values are consistent. If a value is not consistent, the
server jumps to (g).

Encountering an Invalid Hash

(g) If an invalid DOPRF is computed in the Initialization
of the Round (e) or during the Recurring Round (f),
the first step is to identify the compromised server. If
the invalid hash is encountered during the recurring
step, then we can determine the compromised server
is based on which H (:cdummy)ﬁo‘i response doesn’t
match the cached value. If the invalid hash is encoun-
tered during the initialization of the round, then it is
unclear which server is compromised. Under the as-
sumption that at most one server may be compromised
at a time, we can use Algorithm | over the set of ¢
servers in the detected invalid DOPRF operation.

Algorithm 1 Compromised Server Binary Search

1: procedure COMPSEARCH

2: sus_arr < array of servers requested in invalid hash
3 valid_arr < array of all other servers(presumed valid)
4: low <+ 0

5: high < length of sus_arr — 1

6

7 base case:

8 if low > high then

9: return sus_arr[low]
10:
11: mid < low + (high — low) /2.
12: Swap sus_arr[low: mid] with valid_arr[0: mid-low]
13: if DOPRF(sus_arr) is Valid then
14: return CompSearch(valid_arr[0: mid-low])
15: else
16: return CompSearch(sus_arr[mid: high])
17:

(h) Once the compromised serer is detected, the protocol
refreshes the keys for all servers except the compro-
mised server.

4.2.2 Tunable Configurations

The choice of ¢, the number of servers required for a DO-
PREF calculation and n, the total number of servers are val-
ues that will need to change over time with availability and
scalability requirements.

There are additional choices regarding timing: how often
keys are rotated and how often the recurring round (f) is
performed. How often keys are rotated provides tunability
to the period of time in which an adversary would need to
compromise ¢ servers. While the periodicity of the recurring
round enables the worst-case detection of a corrupt server.

One additional option is that in Section 4.2.1, the
database may instead use a different 3 in H (z)” to all key-
holders during Step (f) of the Protocol. This would re-
quire an extra aggregation of the H (x)?®: to check against
the hash of the message, but this adjustment would protect
against potential adversarial keyservers that may detect sim-
ilar queries. Additionally, this would complicate determin-
ing which server is compromised, and would require the use
of Algorithm [if an invalid hash is detected.

4.2.3 Performance

Setup of Database. The setup has to happen only once
and only requires a single insert into the database. There-
fore, it has a constant cost.

Initialization of Round. The intention of the Round Ini-
tialization step of the protocol is to check that each key-
holder server in the distributed system is functional. Thus,
we expect to perform the initialization such that every key-
holder server is initialized in at least 1 group. This equates
to around [% | DOPREF calculations, or O(n) messages be-
tween the database server and individual key-holder servers.

Recurring Round. The Recurring Round is similar com-
putationally to the Initialization of the Round. If the system
is configured to use different 5 values during the Recur-
ring Round as outlined in Section 4.2.2, then the calcula-
tion is equivalent to a single DOPRF calculation per group
of ¢ key-holder servers. This equates to around [%] DO-
PRF calculations, or O(n) messages between the database
server and individual key-holder servers. Otherwise, if the
system uses the same (3 values during the Recurring Round,
then we perform 1 exponentiation less by omitting the cal-
culation in Equation 2.

Recurring Round. As outlined in the SecureDNA sys-
tem, the Key Share Refreshing Protocol requires every
key-holder to communicate with the database server to get
their new keys. This requires O(n) messages between the
database server and individual key-holder servers.

4.2.4 Further Considerations

The algorithm to detect a compromised server without any
valid prior hashes operates under the assumption that only 1
server may be compromised at a time. This assumption may
hold in most cases, but an adversary that coordinates the
takeover of multiple servers may violate this assumption.
There is more work to address this generalized case in an
efficient manner. We may draw inspiration from varients of
the counterfeit coin weighing problem [2] to detect multiple
elements (servers) that are compromised.

The adversary could also try to detect/estimate which
queries come from the database server and which queries
come from a client. Some further work considering this po-
tential attack may include adding randomization of timing
and/or IP address redirection to ensure that the adversary
could not differentiate the database server from clients.

Another direction for progress is creating a mechanism
to prevent a single adversary from triggering repeated key
refreshes. In the current proposed system, when a compro-
mised server is detected, all keys need to be refreshed to
ignore the compromised server. Since any subset of ¢ of the
n key-holders can constitute a valid DOPRE, it is difficult to
selectively deactivate a single compromised server.

5. Future Directions

In addition to our two technical proposals to improve Se-
cureDNA, we have a number of promising extensions.

Customer-client non-repudiation. In the event of a mali-
cious order, we want the the client to be able to prove that
the customer did indeed place the order. To do this, we be-
lieve a couple of alterations are in order. First is making
sure that the customer signs every order to the client. This
allows an external party to verify that they did in fact place
the order. Next, in the event that the client receives notifi-
cation that the order was in the database, we will use a zero
knowledge circuit to generate the proof. The entire DOPRF
will be implemented within a zero knowledge proof, and
the client will then generate a zero knowledge proof that
the given query is in the database. This proof allows for
two things. First, the client cannot falsely accuse customers
of malicious orders. Second, the client does not need to re-
veal the dangerous order itself in order to provide proof that
the customer placed a dangerous order. This minimizes the
chance for dangerous sequences to be publicly leaked.

Pseudorandom lying. Although the database stores the
hashes of a pseudorandom functions whose parameters are
kept private, we could imagine a scenario where the key
servers and the client are colluding to brute force request as
many sequences as possible. While we cannot prevent the
querying, we could make it harder for the adversary to guess
the sequences in the database by allowing the database to
lie with some fixed probability. Specifically, if, for a given

true positive query, the database lies with probability p, then
the adversary will require 1/p more queries to find out the
same information. Given that some number of false nega-
tive matches in a database is acceptable (since multiple of
these sequences are necessary to create a dangerous virus),
this would provide yet another barrier against the existing
adversaries.

Proof of database consistency. We have provided a
means for the database to prove membership or non-
membership. However, in the event that the administrator
wants to add a new sequence to the database, it would be
good to provide a proof that the database is updated in a
consistent way. This can be done using using transparency
logs (See, e.g., Hu et al. (2021) [3]). This is equivalent to
reducing the need to trust the administrator.

References

[1] Carsten Baum, Hongrui Cui, Ivan Damgard, Kevin Esvelt,
Mingyu Gao, Dana Gretton, Omer Paneth, Ron Rivest, Vinod
Vaikuntanathan, Daniel Wichs, et al. Cryptographic aspects
of dna screening. 2020. 1, 2, 4

[2] Richard K. Guy and Richard J. Nowakowski. Coin-weighing
problems. The American Mathematical Monthly, 102(2):164—
167, 1995. 5

[3] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin
Yang, and Raluca Ada Popa. Merkle 2: A low-latency trans-
parency log system. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 285-303. IEEE, 2021. 6

[4] Amy E Smithson and Leslie-Anne Levy. Ataxia: the chemical
and biological terrorism threat and the us response. 2000. 1

	. Introduction
	. SecureDNA Overview
	. Extending the SecureDNA Threat Model
	. Threat scenarios

	. SecureDNA Extensions
	. Database Membership Proof
	Protocol
	Performance Analysis

	. Key-holder Verification
	Protocol
	Tunable Configurations
	Performance
	Further Considerations

	. Future Directions

