
6.857 Final Project: JWT Web Security

Fu, Jamie
jamiefu@mit.edu

Liu, Katherine
liukat@mit.edu

Liu, Richard
liuri@mit.edu

Wong, Anna
annawong@mit.edu

May 2022

Contents

1 Introduction 2

2 JWT Scheme 2
2.1 Construction . 2
2.2 Use Cases . 2

3 Common JWT Vulnerabilities 3
3.1 Token Capture . 3
3.2 None Algorithm Attacks . 3
3.3 kid Attacks . 4
3.4 JKU and JWK Header Parameter Attacks . 4
3.5 Signature Algorithm Attacks . 4
3.6 Brute Force Attacks . 4

4 COVID Pass Investigation 4
4.1 Token Capture . 4
4.2 API Endpoint Access . 6
4.3 Attestation Automation . 8
4.4 None Algorithm Attack . 9
4.5 kid Attack . 9
4.6 Brute Force Attack . 10
4.7 Suggestions to Secure COVID Pass . 12

5 Spectacle Investigation 12
5.1 Client Storage Method . 12
5.2 API Endpoint Access . 13
5.3 Expiration and Refreshing . 13

6 JWT Best Practices 14

7 Conclusion 15

Abstract

We examine JSON web token (JWT) use cases and common attacks and vulnerabilities present in the
JWT scheme. In particular, we focus on two MIT applications, COVID Pass and Spectacle, and their
usage of JWT. We attempt some common JWT attacks on COVID Pass, and although these attacks
were not successful, we find that the storage of JWT in both applications is not secure.

1

1 Introduction

There are several different types of tokens that web applications utilize to verify a user’s identification, check
their access credentials, re-authenticate a user, and send user information to third parties. A JSON web
token, or JWT, is an open standard, compact, URL-safe method of securely transferring information between
two parties, typically between a client and a server on a web application [1]. JWTs provide users the ability
to transfer information that is signed and can be verified using either a shared secret (HMAC) or a public
and private key pair algorithm (RSA, ECDSA). Typically, JWTs are encoded in Base64, and occasionally
applications will add an extra layer of security over the JWT by encrypting it [2].

This paper will focus on the signature and authentication benefits that JWTs provide web applications.
We focused our research on two web applications in the MIT sphere: MIT COVID Pass, an application
that tracks all student information regarding COVID including vaccine status, attestation (deprecated),
test results, etc, and Spectacle, a HackMIT platform where hackers can upload and view projects from
the hackathon. These two platforms utilize JWTs for user authentication but have differing strategies on
how to store and handle them. This paper presents several several common vulnerabilities with JWTs, our
investigation into these two platforms and several attacks we attempted, and closes with some best practices
and methods to enhance the security of JWTs.

2 JWT Scheme

To understand the attacks and vulnerabilities of JWTs enumerated in this paper, it is important to under-
stand the general construction and structure of a JWT and where they are most frequently used.

2.1 Construction

The structure of a JWT looks like: header.payload.signature, where the header, payload, and signature
are the three sections of the token, each separated by a period. Figure 1 shows an example JWT where each
section is a different color. The header (red) contains information about the token itself, such as the token
type (JWT) and the algorithm used to sign the JWT. The payload (purple/pink) contains the relevant data
the sender wishes to convey to the receiver. The signature (blue) takes the header and the payload, encodes
them in base64, then applies the signing algorithm specified in the header to produce a valid signature
with the agreed upon secret key or a public/private key pair. When the receiver receives the JWT, they
will decode the text, and before accepting the payload, they will authenticate the signature with either the
shared secret key or a public/private key pair.

If the JWT was signed by a malicious party, the receiver will (ideally) be unable to authenticate the signature
and thus ignore the rest of the JWT. As you may imagine, much of the security of the JWT relies on the
security of the signing algorithm the platform decides to utilize, however, attackers can still exploit the
construction and general JWT use practices to glean information.

Figure 1: Sample JSON Web Token

2.2 Use Cases

Most commonly, JWTs are used for user authentication in Single Sign On (SSO) for web applications. After
logging on to a platform, users are typically not expected to log in again while navigating the same web page
for the duration of their session. Any activity within that session such as routing and access to services or

2

resources within the platform will trigger the transfer of a JWT. When navigating from one endpoint in the
site to another, the JWT will be sent along with the request, and it will be authenticated by the receiving
endpoint before the user who sent the token is allowed to navigate to that endpoint. This process is typically
very quick and produces no discernible lag in access times.

An example of a platform that utilizes JWTs to authenticate user activity on the web is Touchstone@MIT.
Every MIT student or faculty has likely encountered the Touchstone login prompt shown in Figure 2. Once
logged in, Touchstone will generate a JWT to pass to the application the user is attempting to access, and
the user’s access is granted just as described in the previous paragraph.

JWTs can also be used outside the world of user authentication for information sharing. As you might imag-
ine, the ability to sign and verify the information being passed without having to produce an extraordinarily
long string is quite useful. However, this paper will focus on examining the security of JWTs used for user
authentication, since that is the primary use case of JWTs.

Figure 2: SSO Example, Touchstone Authentication at MIT

3 Common JWT Vulnerabilities

3.1 Token Capture

Token capture is when an adversary is able to get a hold of a user’s token, perhaps by intercepting a
message containing the token. Once a token has been captured, it is easy for an adversary to reveal private
information, as an adversary can simply use the base64UrlDecode function on the payload section of the
token in order to reveal the payload’s information. Furthermore, an adversary with this token can reuse the
token in order to use the application as the user.

One way to avoid a token being captured is to use a secure connection when transferring the token. We can
also avoid sending private or sensitive information in tokens, so that if a token is captured, this information
will not be revealed. We can also set an expiration date for the access token and use refresh tokens to give
the user a new access token when the old one expires. [3]

3.2 None Algorithm Attacks

The signing algorithm for a token, specified in the header of the token, is usually some form of RSA or
HMAC. However, for debugging purposes, the algorithm type in the JWT header is allowed to be specified
as ”none”. When the algorithm is ”none”, that means the token is not signed, and with no signature, we
cannot check that the token is authentic. Thus, when the algorithm type is ”none”, the application does not
check for a signature since one does not exist. As a result, an adversary could change crucial information
in a payload and still get the application to accept a token by changing the algorithm field to ”none”. One

3

way to prevent such an attack is to have the application keep a list of what algorithms are authorized, and
reject any tokens that are not signed using an algorithm on the list. [4]

3.3 kid Attacks

Another parameter for the header section of the token is the ”kid” parameter (key ID). There’s no strict
definition for how this parameter should be formatted. As a result, attacks such as SQL injections or path
traversal attacks can be inserted into this field. To protect against such attacks, a developer can check the
input from the token to make sure it is not a malicious command. [3]

3.4 JKU and JWK Header Parameter Attacks

Similar to the kid attack, there are other header parameters that can be exploited by an adversary. The
JKU (short for ”JWK Set URL”) parameter is an optional field that be used to pass in a URL that gives
the keys used for verification. If precautions are not taken to protect this field, an adversary could pass in
a URL for their own keys and thus have the application verify tokens using the adversary’s key. Similarly,
the optional JWK (short for ”JSON Web Key”) parameter can be used to put the verification key directly
inside the token, so an adversary can pass in its own key. [5]

3.5 Signature Algorithm Attacks

JWT allows for a variety of different signing algorithms, some of which use public/private keys (RSA),
and some of which use shared secret keys (HMAC). When it comes to verifying a signature, a symmetric
algorithm like HMAC will use the secret signing key for verification, whereas an asymmetric algorithm like
RSA will use the public key. However, an adversary can send a token signed with the HMAC secret key
to an application expecting a token signed with the RSA secret key, and this will cause the application to
mistakenly believe that the RSA public key is an HMAC secret key. The adversary can then create and sign
tokens that will be accepted by the application because they can sign a payload using the RSA public key
as a fake HMAC secret key. [4]

3.6 Brute Force Attacks

JWT is also susceptible to brute force attacks on the secrets for their signing algorithms. In the HS256
signing algorithm, if a short and weak secret key is used, it is possible to brute force the key. An adversary
can then use the secret key to sign other tokens. These attacks can be prevented by following general
guidelines for secret keys in cryptography, such as making the key long with many different characters, and
occasionally changing the secret key. [3]

4 COVID Pass Investigation

COVID Pass is MIT’s contact-tracing, testing, and access system. It has been used on campus since Fall
2020 due to the COVID-19 pandemic in order to keep the community safe. Up until this March 2022, users
were required to submit a daily attestation, leading to many students attempting to automate the process
in some way. In a previous semester some students were successful in automating the process through a
browser interaction script. In our investigation we look specifically at COVID Pass’s usage of JWT and
look for vulnerabilities and exposed information. Furthermore, we also examine the possibility of a headless
browser automation for attestation.

4.1 Token Capture

One of the major vulnerabilities of JWT is the dangers of token capture. Because JWT itself does not enforce
how tokens are actually stored on the client-side, many applications misuse it and inadvertently expose their
tokens to both users and adversaries. In the case of COVID Pass, both an access token and ID token can
be found in the Local Storage, among other relevant items.

4

Figure 3: Covid Pass Web Application [6]

Figure 4: Covid Pass Local Storage Sample, Jamie Fu

There are a few noteworthy fields in Local Storage:

1. TokenValidity
In epoch milliseconds, TokenValidity represents the time that each token is valid for. In the case of
COVID Pass, 3600000 ms equals to exactly 1 hour.

2. TokenExpiration
Also in epoch milliseconds, TokenExpiration refers to the time of expiration of the currently issued
tokens. In Figure 4, 1652116896000 translates to May 9, 2022 13:21:36.

3. CognitoIdentityServiceProvider...idToken
A quick lookup of the CognitoIdentityServiceProvider prefix points to Amazon Cognito, an Ama-
zon service that ”handles user authentication and authorization for your web and mobile apps” [7].
The format of the token itself indicates base64 encoding, which implies JWT roots. A decoded header
and payload can be found in Figure 5.

There are several items in the payload, but as the information is only base64-encoded, it is entirely
exposed to anybody who sees this token. For example, despite my name and email most likely being
linked information publicly, my employeeID (blacked out) reveals my student ID number, which I may
not want others to know. On campus, my student ID number allows me to tap into dining halls, check
out library books, and much more.

4. CognitoIdentityServiceProvider...accessToken
The access token, decoded in Figure 5, contains less personally-identifying information. However,
this access token is passed in every single personally-information API request. Holding this token
essentially means holding the ability to obtain personal health information about the associated user.
This is discussed further below.

5

5. CognitoIdentityServiceProvider...refreshToken
With JWT, users can expire old tokens and use a refresh token to generate new access tokens. In
proper usage, the refresh token should always stay on the server-side, and the client should never have
access to it. Having access to the refresh token is almost like having access to the signing key of the
token itself. Despite having a field for the refresh token in Local Storage, the actual value of this field
is empty. This indicates that it’s possible that the authors of Covid Pass may have initially wanted to
place the refresh token on the client side, then realized that doing so would expose more than just a
one-time token, it would give adversaries the ability to generate their own tokens.

Figure 5: Covid Pass Access Token (left) and ID Token (right) Sample, Jamie Fu

Placing tokens in Local Storage is particularly dangerous because these they can be grabbed using XSS
attacks. Furthermore, there are many fields where users are asked to for textual or photo input, such as
COVID test barcodes or vaccine photo uploads. If these inputs are not properly sanitized, JavaScript can
also be executed within these inputs.

In addition, the access token is sent as part of the Request Headers in many major API requests. This means
that tokens can also be grabbed from intercepted requests. We discuss this further in the following section,
Section 4.2.

4.2 API Endpoint Access

Exposing the access token reveals a whole host of personal information accessible to an adversary. We have
mapped a set of exposed API endpoints that can be hit by attaching the proper JWT access token to request
headers. For brevity and security we do not always explicitly attach the response, but will instead examine
the implications of the fields that are available to the user and adversary.

6

Note that these are endpoints that can only be accessed by attaching the proper access token, but they are
also other endpoints not listed here that are also accessible with the proper access token.

1. GET https://api.mit.edu/pass-v1/pass/access status

This endpoint returns a large JSON body response indicating the access ability of the user on the site
itself. This includes health acknowledgement, vaccine, and attestation status. Due to changes in MIT
policy, many of the fields are actually deprecated (notably attestation), but the response values still
persist.

2. PUT https://api.mit.edu/pass-v1/pass/access status

Payload: {"status id":6}
This endpoint allows users to update their own access status on the COVID Pass website. This endpoint
is only hit when a user mistakenly reports symptoms, then clicks the ”I made a mistake” button. We
believe that this endpoint should have higher priority in being secured than other GET requests because
it allows an adversary to actually write to the COVID Pass database. The status id field in the
payload with value 6 indicates a normal access status. However, further testing revealed that other
surrounding numbers (0-5, 7-10) are considered ”invalid” responses for some reason. This may indicate
that certain statuses have been phased out, as 6 is an oddly-selected number.

3. GET https://api.mit.edu/pass-v1/pass/building access

This endpoint reveals the ”special” buildings that a user has access to. For on-campus users, at least
one of these buildings is what dorm the user actually lives in. On initialization, both this endpoint
and the access status endpoints are called.

4. GET https://api.mit.edu/medical-v1/unobserved/status

This endpoint concerns the unobserved testing that was implemented starting Fall 2021. A sample set
of values returned are:

{

"canSubmit": true,

"nextMedicalTestDate": null,

"barcode": null,

"isOpen": false,

"requireUserInfoUpdate": false,

"canCancelSubmittedTest": false

}

5. POST https://api.mit.edu/pass-v1/pass/report symptoms

Payload: {"has symptoms":true}
We also believe that this endpoint is dangerous because it allows an adversary to attest to the vic-
tim having symptoms when they may not actually be exhibiting. This is almost a silent effect–no
notifications are sent to the victim to confirm their symptoms after the original POST request. After
an adversary posts to this endpoint, the victim’s campus access is restricted, and a cascade of conse-
quences occurs. MIT Medical will contact this individual, especially if they continue to try to access
campus during this period when they do not realize their access has expired.

6. GET https://api.mit.edu/vaccine-v1/vaccine/status

This endpoint returns many pieces of information about the user’s vaccines. Not only does it return
the number of vaccines this user has received, it also indicates the vaccine type, administration date,
location, and lot numbers. An image URL is attached linking to an Amazon S3 bucket named ”vaccine-
master” with a direct link and security token in the parameters to access the photo proof.

7. POST https://api.mit.edu/pass-v1/pass/attestations

See Figure 6 for payload.
The payload reveals that the COVID Pass authors did not fully phase out old questions, as the IDs
are interspersed and do not start from index 0. Furthermore, the server does not verify the types of
the payload before processing the response. Therefore, if the boolean values are accidentally sent as

7

string values, they will all be intepreted as true, indicating that the user is attesting to symptoms.

In recent months the daily attestation requirement was fully disassembled, and elements from the
COVID Pass web UI were removed. However, if a user selects ”Check in at a Testing Center”, they
can still access this form (which no longer has any impact on their access). Prior to the removal of the
requirement, if an adversary had access to this endpoint, they could build a false payload and make
the user attest to having COVID symptoms, which like the report symptoms endpoint, would put a
hold on campus access and alert MIT Medical.

8. GET https://api.mit.edu/digital-id-v1/pin

This is a relatively new endpoint added to COVID Pass that generates a six-digit pin code that
supposedly ”can be used to authenticate you in the COVID-19 IVR system or disarm alarm panels
you have been granted access to” [6]. However, this pin is permanent and never changes on re-request
or token refreshes. This is concerning because an adversary merely needs to pull the access pin once
and can use it forever. As of now, our team has no use for the access pin in our daily lives as students
on campus, but it does leave us wondering whether future versions of campus access will leverage this
pin to access alarm panels.

4.3 Attestation Automation

As indicated by the previous section, attestation was one of the major requirements that every user on the
COVID Pass system needed to fulfill on a daily basis to access campus. Previous projects have examined
how one might use Selenium to simulate browser interaction and attest automatically every day. Due to
our research with JWT and API endpoint access, we believed that we could write a script to automatically
attest on a regular schedule. Recall that we can build a request with the payload described in Figure 6.

Figure 6: Covid Pass Attestation Endpoint and Payload

We constructed the following simple script:

url = "https://api.mit.edu/pass-v1/pass/attestations"

payload = {

"answers": [

{

"id": "14",

"checked": False

},

{

"id": "16",

8

"checked": True

},

{

"id": "18",

"checked": False

}

]

}

headers = {’authorization’: ’Bearer

eyJraWQiOiJOblE3OEhrVzJCVUdBOFwvQm5YUzA3dGc1bUJrd3lHTHNBSGl5RGFDZzEzbz0iLCJhbGciOiJSUzI1NiJ9.

eyJzdWIiOiI2NTJhM2E1ZS0yMTlkLTRhNWEtOTA4Zi1lNThhMWIzMDY2NTIiLCJjb2du...

FlyI1wKlZD9ApcUHsCXiXn71ibMXMsKoYaJM1my40zhRcNtx9vL-8JUm-K79x6sin25ubB6QJo8cnQP-26

SzpeZCVwhEKW4DAs4-ToUiKg9Y21rGY3MnrZ-S8BscYw8dvBQcH-PV6QtI8w’}

def attest():

r = requests.post(url, json=payload, headers=headers)

print(r.json())

if __name__ == ’__main__’:

scheduler = BlockingScheduler()

scheduler.add_job(attest, ’interval’, seconds=30)

print(’Press Ctrl+{0} to exit’.format(’Break’ if os.name == ’nt’ else ’C’))

try:

scheduler.start()

except (KeyboardInterrupt, SystemExit):

pass

attest()

Using a scheduler, we can make the attestation POST request a job that runs daily at the same time. However,
recall that we saw that refreshToken was not available in Local Storage from Section 4.1. We also discovered
that a new token was generated whenever a browser login occurred and the user’s prior access token had
expired. Those tokens were expired an hour after issuance.

This implies that the process is not fully automated with access to the user’s browser, but it does leave a
window of time for adversaries to use grabbed tokens to authenticate requests.

4.4 None Algorithm Attack

We attempted the none algorithm attack on COVID Pass. We took the token stored in local storage and
modified the header to use the ”none” algorithm, and removed the signature (see Figure 7). However,
passing this in as the token did not work as the website did not accept the modified token. This suggests
that the developers of COVID Pass took precautions to defend against this attack, perhaps by making sure
the algorithm specified in the header is not ”none”.

4.5 kid Attack

We attempted to attack the COVID Pass site through a directory path traversal attack. To do this, we
started a server on our local machine with the python SimpleHTTPServer command. Then, we generated
new public and private RSA keys using the following command:

ssh-keygen -t rsa -b 4096 -m PEM -f jwtRS256.key

We modified the original ID Token JWT from a recent COVID Pass session. To modify the token, we replaced
the kid field with the file path through the local server to the public key stored on the local machine. The
modified header and kid value is shown in Figure 8. We then used the public and private keys generated to
sign the encoded message according to the algorithm expected by the COVID Pass website (RS256).

9

Figure 7: Modified Token with None Algorithm

Figure 8: The original header + kid (left) and the modified header + kid (right)

Unfortunately, after changing the private and public key values, the token was no longer accepted by the
COVID Pass website and its subsequent API endpoints. We theorize that this could be due to the fact that
the COVID Pass kid value in the JWT is not technically a file path, or the file path is further encrypted
using a method that is not public to us. Another important thing to note is that the COVID Pass website
is hosted by a CDN (Amazon CloudFront) which prevented us from accessing the true IP address of the site
and, thus, attacking the kid by exploiting similar file paths.

4.6 Brute Force Attack

We attempted a brief brute force attack on the secret key/public key pair for the RS256 algorithm.

Earlier, we described a brute force attack in which weak secret keys compromise the security of HS256
signed JWT tokens. The type of brute force attack we described earlier is one in which a weak key such as
”covid-pass-22” might be used, therefore being vulnerable to dictionary attacks and other password-cracking
methods. Covid Pass instead operates using RS256 signed tokens. Since this key pair is a RSA key pair, it
is exceedingly difficult to recover the actual secret key by following the process of key generation, since it
could vary so widely in the type of randomness used and the process used to generate the primes. This is in
contrast to unlike in HS256 where a weak key might be hardcoded rather than generated.

In our brute force attempt to recover the secret key, we instead focus on recovering the secret key from the
public key instead of trying to generate a correct secret key. We do so by factoring – getting the prime
factors of the modulus, which if successful would lead to the secret key. We obtain the following JWK string
formatted public key and convert it to PEM.

The public key in JWK string format:

{

10

"e": "AQAB",

"kty": "RSA",

"n": "o7D0z3Px22Q7DfKDoM4fqn_5Xg8Us7Ic7lsglTBrl29xjz_0vWKqCMvahbagpW4_

SuvZhf7BZXM-Ne4e9E4kjoxBpXXcybUwRa2v73WtCLQatrPUb-yGAFw1yV9z6XA49pHS8q

9nhf2VuOZZaAdgzXXi3FkmFNJxogJQGEDu0WSXgqqfHICVkAruZgILvUuES_Wgl0rGoXD_

BHNU07yVEyXDkIhoGez2SiBerghRCX7wqqT8eoRWScue28fpCLJEuFaj4WTcYMr__mlInU

Fe_TbCfD5tELqlCiBjpUKZDNmi4zXPb6ZTFDLP8eTcJajlrR3JrjclvBkKGvPN908rUw"

}

The public key in PEM format:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAo7D0z3Px22Q7DfKDoM4f

qn/5Xg8Us7Ic7lsglTBrl29xjz/0vWKqCMvahbagpW4/SuvZhf7BZXM+Ne4e9E4k

joxBpXXcybUwRa2v73WtCLQatrPUb+yGAFw1yV9z6XA49pHS8q9nhf2VuOZZaAdg

zXXi3FkmFNJxogJQGEDu0WSXgqqfHICVkAruZgILvUuES/Wgl0rGoXD/BHNU07yV

EyXDkIhoGez2SiBerghRCX7wqqT8eoRWScue28fpCLJEuFaj4WTcYMr//mlInUFe

/TbCfD5tELqlCiBjpUKZDNmi4zXPb6ZTFDLP8eTcJajlrR3JrjclvBkKGvPN908r

UwIDAQAB

-----END PUBLIC KEY-----

Using the pyjwt library, we can verify the correctness of the public key (it should verify the certificate of the
signed JWT).

import jwt

encoded_jwt = "eyJraWQiOiJu..."

key = b"-----BEGIN PUBLIC KEY-----\nMIIBI..."

decoded = jwt.decode(encoded_jwt, key, algorithms=["RS256"], options={"verify_exp": False, "

verify_aud":False})

We can then obtain the modulus using the following command:

$openssl rsa -in pubkey.pem -pubin -modulus -noout

Modulus=A3B0F4CF73F1DB643B0DF283A0CE1FAA7FF95E0F14B3B21CEE5B2095

306B976F718F3FF4BD62AA08CBDA85B6A0A56E3F4AEBD985FEC165733E35EE1E

F44E248E8C41A575DCC9B53045ADAFEF75AD08B41AB6B3D46FEC86005C35C95F

73E97038F691D2F2AF6785FD95B8E659680760CD75E2DC592614D271A2025018

40EED1649782AA9F1C8095900AEE66020BBD4B844BF5A0974AC6A170FF047354

D3BC951325C390886819ECF64A205EAE0851097EF0AAA4FC7A845649CB9EDBC7

E908B244B856A3E164DC60CAFFFE69489D415EFD36C27C3E6D10BAA50A2063A5

42990CD9A2E335CF6FA6531432CFF1E4DC25A8E5AD1DC9AE3725BC190A1AF3CD

F74F2B53

And then use the following script to brute force the factorization process:

from tqdm import tqdm

max_test = 10_000_000_000

m = int(’A3B0F4CF73F...’, 16)

for i in tqdm(range(3,max_test,2)):

if m % i == 0:

print(i)

break

We tested possible prime factors up to 10 billion (10 digits) and found no prime factors of the modulus in the

11

public key. This testing was carried out on a consumer-level laptop (16 inch Macbook Pro), with a poorly
optimized script, and only for the duration of 2 hours. Real adversaries should be assumed to have much
more compute at their disposal and also invest much more time. As such, although we cannot definitively
conclude that their key generation process is not vulnerable to this type of attack, primes were probably
chosen with enough care that this type of attack is not practical or feasible.

4.7 Suggestions to Secure COVID Pass

Currently, Covid Pass uses JWT tokens to authenticate the user actions on the Covid Pass website. We have
noted previously that the storage of JWT tokens with important information (e.g. student ID) makes such
information vulnerable to user side attacks (e.g. XSS). We have 2 suggestions that would work to provide
better security.

1. Restrict the data within the JWT Token, optimally to just a single obscure user identifier (e.g. hash of
student ID), and allow recipients of the JWT Token (e.g. API Endpoints) to query the Token Provider
with additional information. The Token Provider can then restrict themselves to only responding to
verified API endpoints, for example through the use of firewalls. Such a design reduces the information
an attacker can get by just obtaining the JWT Token. The attacker would additionally have to
successfully pose as the API Endpoint in order to obtain user-specific information.

2. Encrypt the data within the JWT Token. Since Covid Pass uses the JWT tokens for only a limited
amount of recipients (notably for API Endpoint Access), public-key cryptography could be used to
encrypt the contents of the JWT for those recipients (who are able to decrypt with their own private
key). This would means that the browser would be able to access the API Endpoints as desired, while
adversaries who are able to compromise the browser and obtain the JWT tokens would be presented
with no additional important information about the user.

More care can also be placed in determining where the JWT tokens are stored. To increase the difficulty for
attackers to access the JWT tokens, the tokens should be stored differently. Moving the tokens to Session
Storage would make sure they are cleared when the browser session ends and are not accessible form other
tabs. Moving the tokens to in-memory storage would be even better (e.g. inside a JS closure, where language
semantics make XSS extremely difficult) [8].

API endpoints can also be modified to reduce the amount of damage an attacker can cause to the system,
should they obtain an access token. For example, the report symptoms endpoint might require more from
the user in the post request (e.g. a new photo of the user) to make it harder for the attacker to generate a
correct request.

5 Spectacle Investigation

After our COVID Pass investigation, we also decided to compare our findings with the usage of JWT in
Spectacle, a project submission platform developed by members of the HackMIT team [9]. The header and
payload of the access tokens we discovered on Spectacle are in Figure 10. The payload contains significantly
less personally-identifying information, only including mandatory fields and an identity field. The identity
field is the UUID associated with the particular user, but bears no relation to the actual user’s name itself.

5.1 Client Storage Method

One of the design decisions that the authors of Spectacle made that protects their access tokens better is
by placing them in HTTPS-protected cookies on the client-side. This means that the access token is only
attached to requests when the connection is secured, mitigating the risk of spying adversaries. Furthermore,
cookies are also not vulnerable to XSS as keeping tokens in Local Storage is.

We noted that cookies were not always wiped between sessions, however. That is, when a user logged out,
the cookies persisted. If an adversary had direct access to a browser, even if the user had logged out, the

12

Figure 9: Spectacle Web Application [9]

adversary could pull the cookie and send it to themselves. Therefore, we believe that while storing access
tokens in cookies is the right design decision, it can still be vulnerable to attacks.

5.2 API Endpoint Access

One of the major discoveries we made on Spectacle is that the server did not differentiate between each user’s
access tokens on several important endpoints. In particular, the following endpoint asks for information about
teammates with team name.

curl --location --request GET ’https://spectacle.hackmit.org/api/user/team/teammates?team_name=Hack

Team’ \

--header ’cookie: access_token_cookie=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.

eyJpYXQiOjE2NTIxNTQ3MTAsIm5iZiI6MTY1MjE1NDcxMCwianRpIjoiYWMzM2MwMGQtMTI4Ni00YzAyLWE5YzQtMDg2OD

...XNoIjpmYWxzZSwidHlwZSI6ImFjY2VzcyJ9.NRRrldr3COYIKg62OLdZ5jlQzqB1UWXOAKIRzuhczY0’

The response body of this endpoint returns far more information than is publicly available on the website
itself. This implies that the client only uses a portion of the response it receives and ”discards” the other
information it receives. Because the information returned only depends on the team name parameter, a user
can access the personal information about anybody on any team. Information revealed includes users’ emails,
the projects they liked, and their notifications. This is information that every user needs for themselves, but
they should not be able to access other users’ information with their own access token.

We found that admin endpoints were protected, so regular users all had the same privileges as each other.
The problem was that their privileges were not limited and specific to the user itself. The server merely
checked for the presence of a valid access token rather than verifying the identity of the user itself.

5.3 Expiration and Refreshing

Although the access tokens on Spectacle reveal less information about the user, they also fail to expire in
a timely manner. As one can calculate from Figure 10, each access token expires after 3 full days. Most
HackMIT events last for less than 3 days. This means that if an adversary were to obtain an access token at
the beginning of the event, they could use it for the duration of the entire event. Paired with the previous
vulnerability, they could obtain information about all of the participants of the event.

13

Figure 10: Spectacle Access Token Sample, HackMIT member

6 JWT Best Practices

To protect against attacks mentioned in previous sections, the following actions, recommended by IETF,
should be taken to mitigate the ability of the attacker to compromise the security of JWTs[10]:

• None Algorithm Attacks can be mitigated through careful consideration of appropriate signing algo-
rithms. Algorithms need to still secure at the time of use to protect JWTs from attackers. Although
the ”none” algorithm is fine in certain contexts (e.g. when protected by TLS), they should only be
allowed after careful consideration

• Brute force attacks can be mitigated by ensuring that cryptographic keys are sufficiently random and
should not be a human-memorizable password.

• KID/JKU attacks can be mitigated by treating received claims within the JWT as untrustworthy.
Specifically, the ”kid” field should be santized to prevent SQL or other database injection attacks.
Similarly, the ”jku” field should be checked and treated with suspicion (e.g. check against an up-
to-date whitelist, and making sure as little information as possible is transmitted through the GET
request for the key).

• Token capture attacks can be mitigated in scope through the use of optional fields such as the Issuer,
Subject, and Audience fields (”iss”, ”sub”, ”aud” respectively).

The issuer claim allows the application to validate that the keys used for the operation belong to the
issuer (so that attacks that just sign the JWT with another key do not work).

The subject claim allows the application to validate that the subject is valid before proceeding to
validate the token, making sure that the correct party is using the token.

The audience claim allows the JWT to be targeted towards a specific final recipient. For example, in
the Covid Pass Investigation, splitting up tokens to be used for different API endpoints may allow for
better security against the accidental leakage of singular tokens.

IETF recommends other best practices to be carried out to ensure the cryptographic security of JWT. For
example, they recommend not compression data before encryption to avoid leaking plaintext information.
The full report by the IETF for JWT best practices can be found here.

14

https://datatracker.ietf.org/doc/rfc8725/

7 Conclusion

While we were not necessarily able to utilize the attacks we theorized about to exploit COVID Pass’s
usage of JWTs, we found that their JWT storage technique was likely not entirely secure. Much of the
security of a JWT depends on the security of the signature algorithm itself. However, because JWTs are
typically not encrypted and easily decoded, we were able to gain information from both the COVID Pass site
and Spectacle that could be used maliciously by an attacker. The structure of a JWT and typical JWT use
patterns leave them vulnerable to certain attacks such as the None algorithm attack, kid attacks, brute force
attacks, and even attacks upon the signature algorithm. We found that COVID Pass had much stronger
security measures than we originally anticipated, likely because their JWTs are produced and handled by
a service provided by Amazon, which promises extended security against extended attacks on JWTs. In
our investigation into HackMIT’s platform, Spectacle, we found that the application was using inadequate
security measures to protect information users were not supposed to access. Because they did not actually
determine if the user was allowed to access some endpoints and instead only checked that the signature was
valid, they unintentionally exposed a lot of private information that any single user could access.

We believe all web applications should be taking extra precautions when it comes to the use of JWTs in
their service. Third party tools such as Amazon Cognito help applications achieve extra security without
having to dedicate extraordinary time and effort into building the layers of web security themselves.

We would like to extend a special thanks to the 6.857 Spring 2022 course staff for giving us the background
and the time we needed to successfully complete our project. We would also like to thank the MIT COVID
Pass and HackMIT teams for permitting us to investigate their applications.

15

References

[1] “JWT IETF.” https://datatracker.ietf.org/doc/html/rfc7519. Accessed 2022-05-09.

[2] “JWT.” https://jwt.io/. Accessed 2022-05-09.

[3] “Security of JSON Web Tokens (JWT).” https://cyberpolygon.com/materials/

security-of-json-web-tokens-jwt/. Accessed 2022-05-09.

[4] “Critical vulnerabilities in JSON Web Token libraries.” https://auth0.com/blog/

critical-vulnerabilities-in-json-web-token-libraries/. Accessed 2022-05-09.

[5] “Hacking JSON Web Tokens (JWTs).” https://medium.com/swlh/

hacking-json-web-tokens-jwts-9122efe91e4a. Accessed 2022-05-09.

[6] “COVID Pass.” https://covidpass.mit.edu/#. Accessed 2022-05-09.

[7] “Amazon Cognito Documentation.” https://docs.aws.amazon.com/cognito/index.html. Accessed
2022-05-09.

[8] “Secure Browser Storage: The Facts.” https://auth0.com/blog/

secure-browser-storage-the-facts/. Accessed 2022-05-09.

[9] “Spectacle.” https://spectacle.hackmit.org/. Accessed 2022-05-09.

[10] “RFC8725 - JSON Web Token Best Current Practices.” https://datatracker.ietf.org/doc/

rfc8725/. Accessed 2022-05-09.

16

https://datatracker.ietf.org/doc/html/rfc7519
https://jwt.io/
https://cyberpolygon.com/materials/security-of-json-web-tokens-jwt/
https://cyberpolygon.com/materials/security-of-json-web-tokens-jwt/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a
https://medium.com/swlh/hacking-json-web-tokens-jwts-9122efe91e4a
https://covidpass.mit.edu/#
https://docs.aws.amazon.com/cognito/index.html
https://auth0.com/blog/secure-browser-storage-the-facts/
https://auth0.com/blog/secure-browser-storage-the-facts/
https://spectacle.hackmit.org/
https://datatracker.ietf.org/doc/rfc8725/
https://datatracker.ietf.org/doc/rfc8725/

	Introduction
	JWT Scheme
	Construction
	Use Cases

	Common JWT Vulnerabilities
	Token Capture
	None Algorithm Attacks
	kid Attacks
	JKU and JWK Header Parameter Attacks
	Signature Algorithm Attacks
	Brute Force Attacks

	COVID Pass Investigation
	Token Capture
	API Endpoint Access
	Attestation Automation
	None Algorithm Attack
	kid Attack
	Brute Force Attack
	Suggestions to Secure COVID Pass

	Spectacle Investigation
	Client Storage Method
	API Endpoint Access
	Expiration and Refreshing

	JWT Best Practices
	Conclusion

