
6.857 Final Project: Image Steganography

Dean Fanggohans Caroline Jin

May 10, 2022

Abstract

As people use multimedia like images, audio, and video on the internet, it is important that this
data is securely sent to the recipient. Encryption can prevent an adversary from learning about any
content in the media, but the attacker knows that sensitive data is transmitted between two users.
Image steganography enables the user to conceal the existence of a secret message by hiding in some
cover images. In this paper, we will explore different image steganography methods and analyze the
security of each technique.

1 Introduction

Steganography enables invisible communication between the sender and receiver by hiding a secret inside
some cover medium. It has been used since the age of the Greeks when Histaeus sent secrets by tattooing
a slave’s scalp, waiting for the hair to grow and cover the scalp, and then sending the slave to deliver the
secret. Even during World War II, the Germans used null ciphers where for instance, the secret was every
third letter in a given message [7, 5].

In the digital world today, steganography methods are divided into categories based on different cover
mediums like image, audio recording, video, or even text. People often use images due to its high capacity
to hold data. Images also contain redundant data, so changing a few bits for the secret does not mutate the
image as much—especially the least significant bits of the image data.

Broadly speaking, image steganography can be further divided into two groups based on the domain it is
being performed: spatial and frequency. With spatial domain, the secret is embedded directly by mutating
the pixel values of the cover image, while the frequency domain instead involves embedding the secret in the
frequency representation of the cover image, which can be obtained through some transformation [5, 6].

In this paper, we will be analyzing a method called LSB for the spatial domain and another method called
DCT-LSB (which we will refer to as just DCT, for brevity) for the frequency domain. We will evaluate these
two methods based on how well the secret can be recovered from the cover image in Section 3 and the
security of these two methods in Section 4. We will also discuss how adding key into these steganographic
method can enhance our security guarantees in Section 4.2.

2 Implementation

2.1 LSB

We represent an image as a three-dimensional array of 8-bit unsigned integers, where the dimensions corre-
spond to height, width, and channel (RGB images will have 3 channels, for instance). To embed the secret
data, the least significant bits (LSB) of the image are flipped to the bit-value of the secret data [6]. For
instance, let’s say we are embedding secret ’110’ in an RGB image. Since each pixel value has 3 channels,
we can embed all three bits of this secret using just one LSB. The new pixel value would look like as follows:

(10001101,00110101,11101100)

.
The idea for LSB is that changing the LSB should not add too much noise into the cover image. We

discuss later the potential security flaws through statistical analysis in Section 4.1.2.

1



2.1.1 Code

1 def embed(cover_mat: IntArr , data: bytes , key: bytes = None , num_lsb: int = 1) -> IntArr:

2 flat_cover = cover_mat.flatten ()

3

4 # Perform random permutation with RNG seeded by the key

5 if key:

6 perm , inv_perm = _generate_permutation(key , len(flat_cover))

7 flat_cover = flat_cover[perm]

8

9 # Check hiding capacity

10 if 8*len(data) > len(flat_cover) * num_lsb:

11 raise ValueError(’data exceeded the hiding capacity ’)

12

13 # NOTE: Match the dtype here (otherwise there would be a weird casting bug)

14 data_bitarray = _split_from_bytes(data , num_lsb).astype(flat_cover.dtype)

15

16 flat_cover [:len(data_bitarray)] &= ~((np.ones_like(data_bitarray) << num_lsb) - 1) #

Remove ‘num_lsb ‘ LSBs

17 flat_cover [:len(data_bitarray)] |= data_bitarray # Write data into LSBs

18

19 # Invert permutation

20 if key:

21 flat_cover = flat_cover[inv_perm]

22

23 stego_mat = np.reshape(flat_cover , cover_mat.shape)

24 return stego_mat

25

26 def extract(stego_mat: IntArr , key: bytes = None , num_lsb: int = 1) -> bytes:

27 flat_stego = stego_mat.flatten ()

28

29 if key:

30 perm , _ = _generate_permutation(key , len(flat_stego))

31 flat_stego = flat_stego[perm]

32

33 return _merge_to_bytes(flat_stego , num_lsb)

Listing 1: LSB embedding and extraction

(a) DCT (No security key and no recovery) (b) DCT (With security key and recovery)

Figure 1: DCT diagram comparison between naive (i.e. no security and recover information) and fixed (i.e.
security key and recovery)

2



2.2 DCT

In DCT, the process starts with converting the cover image into its frequency domain using DCT (Discrete
Cosine Transform), and then proceeds to using LSB method to embed the data. To obtain the stego image
(i.e. cover image with the embedded secret), we convert this embedded DCT image back into its spatial
domain using inverse DCT. This process is shown in Figure 1a.

One subtlety that arises from this method is that DCT (and its inverse) produces real numbers rather than
integer values. This introduces some rounding, which corrupts the hidden data embedded in the frequency
domain. While this is not an issue for generating the stego image, we will not be able to recover our secret
back if the stego image is not stored properly (as shown in Figure 1a).

In order not to corrupt the embedded secret, we need to keep the embedded DCT image in its frequency
domain while storing it on disk. In fact, this scheme is done by some image formats like JPEG (as long as
we don’t additionally perform lossy compression on the DCT values). For instance, as long as we store the
DCT image in the correct JPEG format, any standard image viewer will be able to generate the stego image
(i.e. in spatial domain) for us. Then, we can perfectly recover the secret back by reading the LSB values
from the DCT image, since no additional DCT or inverse DCT is performed between the LSB embedding
and recovery (as shown in Figure 1b).

2.2.1 Code

1 def dct(mat: ImageMatrix) -> DctOutputMatrix:

2 nrows , ncols = mat.shape[0], mat.shape [1]

3 nchannels = 1 if len(mat.shape) == 2 else mat.shape [2]

4

5 if nrows % BLOCK_SIZE != 0 or ncols % BLOCK_SIZE != 0:

6 raise ValueError(f’Width and height of the image must be multiple of {BLOCK_SIZE}’)

7

8 # Temporarily expand grayscale matrix into 1-channel image

9 if len(mat.shape) == 2:

10 mat = np.expand_dims(mat , axis =2)

11

12 # Recenter [0, 255] -> [-128, 127]

13 signed_mat = mat.astype(np.int16) - 128

14

15 # Perform DCT block -wise

16 dct_mat = np.zeros_like(signed_mat , dtype=np.int32)

17 for i in range(0, nrows , BLOCK_SIZE):

18 for j in range(0, ncols , BLOCK_SIZE):

19 for k in range(nchannels):

20 block = signed_mat[i:i+BLOCK_SIZE , j:j+BLOCK_SIZE , k]

21 dct_mat[i:i+BLOCK_SIZE , j:j+BLOCK_SIZE , k] = _dct(block)

22

23 # Revert matrix expansion

24 if len(dct_mat [0][0]) == 1:

25 dct_mat = np.squeeze(dct_mat , axis =2)

26

27 return dct_mat

28

29 def idct(dct_mat: DctOutputMatrix) -> ImageMatrix:

30 nrows , ncols = dct_mat.shape[0], dct_mat.shape [1]

31 nchannels = 1 if len(dct_mat.shape) == 2 else dct_mat.shape [2]

32

33 if nrows % BLOCK_SIZE != 0 or ncols % BLOCK_SIZE != 0:

34 raise ValueError(f’Width and height of the image must be multiple of {BLOCK_SIZE}’)

35

36 # Temporarily expand grayscale matrix into 1-channel image

37 if len(dct_mat.shape) == 2:

38 dct_mat = np.expand_dims(dct_mat , axis =2)

39

40 # Perform IDCT block -wise

41 idct_mat = np.zeros_like(dct_mat , dtype=np.int16)

42 for i in range(0, nrows , BLOCK_SIZE):

43 for j in range(0, ncols , BLOCK_SIZE):

3



44 for k in range(nchannels):

45 block = dct_mat[i:i+BLOCK_SIZE , j:j+BLOCK_SIZE , k]

46 idct_mat[i:i+BLOCK_SIZE , j:j+BLOCK_SIZE , k] = _idct(block)

47

48 # Revert matrix expansion

49 if len(idct_mat [0][0]) == 1:

50 idct_mat = np.squeeze(idct_mat , axis =2)

51

52 # Floor and ceil out -of-bound values

53 idct_mat = np.minimum(np.maximum(idct_mat , -128), 127)

54

55 return (idct_mat + 128).astype(np.uint8) # Recenter [-128, 127] -> [0, 255]

Listing 2: DCT embedding and extraction

2.3 Key-Based Steganography

We can further enhance both the LSB and DCT methods with additional layer of security: Even if an
adversary is able to detect the presence of a hidden secret inside of stego image, they should not be able to
extract the secret—a property we refer to as unextractability (see our discussion in Section 4).

We achieve this in our implementation by randomly permuting the entire pixels of the cover image before
we embed the secret. Note that in the previous methods, we simply fill in the LSB linearly (i.e. from top-left
to bottom-right), but by using this method all bits of the secret data will effectively be randomly scattered
throughout the cover image. To recover the secret, we need to be able to invert the permutation determin-
istically, in which case we can use a source of randomness (basically a PRF) seeded with a symmetric key
shared between the sender and the recipient. This will allow the recipient to invert the random permutation
as long as they know the secret key. On the other hand, an adversary will not be able to generate this invert
permutation, and thus unable to determine the correct ordering of the secret embedded in the LSB.

2.4 Experiments

We experimented with using three different cover images shown in Table 1 of size 512x384 pixels and em-
bedding the same secret image of size 128x96 pixels, which is a quarter of the size of the cover image. For
our experiments, we worked on varying the steganography methods, whether a key should be used, and how
many LSBs per pixels we should embed the image.

3 Recovered Image

Before analyzing security, we wanted to evaluate whether the recipient can extract the message from the
stego image. The results of the percentage of the secret image recovered is shown in Table 1. With LSB, the
recipient can fully recover the secret whereas in DCT (using the naive approach), due to rounding error, the
recipient can only partially recover the image. Due to this partial recovery, encrypting the secret and then
embedding DCT is not recommended.

4 Security

When evaluating for security, we considered the two following security guarantees [4]:

1. ”Imperceptibility”: The cover image should not degrade after applying the steganography method.
The secret should not be detected.

2. ”Unextractability”: The adversary cannot extract any part of the hidden secret from the steganographic
image.

These security guarantees are layered. If the method offers the first security guarantee, the second security
follows through as an adversary without knowing a secret exists in the first place will not attempt to extract.
However, if the adversary does know the secret exists but the method provides the second guarantee, then
at least secret remains unknown.

4



Cover Image Recovered Image (LSB) Recovered Image (DCT naive)

100.0 57.33

100.0 59.76

100.0 45.91

Table 1: This table shows a comparison of the recovered images from different steganography methods as
well as the percentage of pixels recovered.

4.1 Imperceptibility

In evaluating the first guarantee, we decided to use the following criteria: distortion measure with PSNR
and statistical analysis with RS-steganalysis.

Distortion measures involve considering the difference between the stego image (i.e. cover image con-
taining the secret) and original cover image. PSNR is a common distortion measure used for the security
of image steganography [6, 4], given that the adversary only has the ability to distinguish between the two
images.

However, this is not the case as the adversary has the power to repeatedly ask some encoding oracle to
embed the hidden data for a given cover image. Different amounts of embedding can help the adversary
learn how a stego image differs from cover image. This is the approach for RS-steganalysis [1]. For our
analysis, we will be using both PSNR and RS-steganalysis.

4.1.1 PSNR

Peak signal-to-noise ratio (PSNR) measures how distorted the stego image is compared to the base cover
image. The higher the PSNR value, the less the distortion, meaning the secret from a visual perspective is
embedded well in the cover image. A value above 30 dB means is a threshold for an acceptable distortion
value [6], but any PSNR value less than that means the distortion is too high and can be detected. The
results of embedding a secret image into different covers images using different steganography methods are
shown for in Table 2. In general, both methods have comparable PSNR values across different cover images.

5



Cover Image Stego Image (LSB) Stego Image (DCT)

46.43 46.20

39.91 39.84

44.27 44.07

Table 2: This table shows a comparison of the original cover images (512x384 pixels) and stego images
(512x384 pixels) resulting from different steganography methods as well as the PSNR value. For both
methods, we are storing the hidden image (128x96 pixels) in only one LSB per pixel without using a key.

4.1.2 RS-Steganalysis

While using LSB has made visual analysis through distortion metrics like PSNR difficult, Fridrich et al.
[1, 3] found that there was a strong correlation between bit planes using LSB steganography. Using this
fact, they develope RS-steganalysis, which can detect the presence of a secret and how much of the secret is
embedded in the cover image.

RS steganalysis involves the following procedure [1, 3]. An image is divided into groups of neighboring
pixels; a discrimination function is applied to each group to determine its noisiness (i.e. higher noise is
equivalent to higher difference between adjacent pixels). Noise is injected into each group using one of two
flipping functions F1 and F−1. F1 flips the least significant bit like LSB would where 1 changes to 0, 0 to 1,
2 to 3, 3 to 2, and so on. F−1 changes pixel values similarly from -1 to 0, 0 to -1, 1 to 2, and so on. After
applying the flipping function, the discrimination function is applied to noise-injected group and the result
is compared to the original group. Groups are divided into R-group (increase in noise), S-group (decrease in
noise), and neutral (no change).

For images with no embedding, the difference between the R and S groups should be approximately the
same regardless of the flipping function used. However, this is not the case for LSB-embedded image, in
which the ratio of R groups will be greater when applying F−1 vs when applying F1. The difference between
R and S groups when applying F−1 increases and decreases for F1 when embedding more secret data into
the cover image. The comparison of this difference is shown in Figure 2. We see that as we embed more data
for LSB their is a distinctive increase in difference for F−1 and decrease in different for F1 whereas DCT
remains fairly constant.

6



(a) Original Cover Image (b) LSB Stego Image (c) DCT Stego Image

Figure 2: RS plot comparison between original, LSB, and DCT.

4.1.3 Other Statistical Analysis

RS-steganalysis attacks focuses primarily on revealing LSB steganography. There are also other steganalysis
attacks for DCT, such as using the properties of AC coefficients [2]. There still work that needs to be done
on defining concrete metrics of measuring imperceptibility.

4.2 Unextractability

The adversary should not be able to extract any part of the hidden secret from the stego image. One way
to achieve this is by combining cryptography, i.e. encrypting the secret before the we embed it, but in this
paper we try to look more into some key-based steganography techniques.

Without any additional technique, both LSB and DCT can be vulnerable to extraction once the adversary
knows that there exists a secret. However, using our method of randomly permuting the pixels of the
embedded image, no one except the sender and the recipient can extract the hidden secret from the stego
image, since it can only be done with the knowledge of the secret key. Furthermore, we also claim that this
method is secure (in a similar sense to how we define security in encryption), which follows directly from the
property of PRFs.

5 Future Work

While LSB (both in spatial and frequency domain) is the most common technique used to perform steganog-
raphy, recent approaches tend to combine LSB with other techniques. For instance, an image steganography
technique called F5 uses matrix encoding in order to achieve higher hiding capacity (i.e. the amount of data
that can be embedded inside a cover image) [9]. Some other methods use various kinds of encoding and
compression techniques, as well as other schemes for performing key-based steganography.

Some research can also be done on finding better evaluation metrics to evaluate the imperceptibility of
image steganography techniques, e.g., more statistical-based metrics rather than just relying on the visual
perception of human eyes. On the other spectrum, there are also some works that explore the possibility of
having a public-key steganography [8], which will definitely be worth exploring.

7



6 References

References

[1] Jessica Fridrich and Miroslav Goljan. Practical steganalysis of digital images: state of the art. security
and Watermarking of Multimedia Contents IV, 4675:1–13, 2002.

[2] Mao Jia-Fa, Niu Xin-Xin, Xiao Gang, Sheng Wei-Guo, and Zhang Na-Na. A steganalysis method in the
dct domain. Multimedia Tools and Applications, 75(10):5999–6019, 2016.

[3] SIMON JOHANSSON and EMIL LENNGREN. Steganographic embedding and steganalysisevaluation:
An evaluation of common methods for steganographic embedding and analysis indigital images., 2014.

[4] Inas Jawad Kadhim, Prashan Premaratne, Peter James Vial, and Brendan Halloran. Comprehen-
sive survey of image steganography: Techniques, evaluations, and trends in future research. Neu-
rocomputing, 335:299–326, 2019. URL: https://www.sciencedirect.com/science/article/pii/

S0925231218312591, https://doi.org/https://doi.org/10.1016/j.neucom.2018.06.075 doi:https://doi.

org/10.1016/j.neucom.2018.06.075.

[5] Tayana Morkel, Jan HP Eloff, and Martin S Olivier. An overview of image steganography. In ISSA,
volume 1, pages 1–11, 2005.

[6] Anita Pradhan, Aditya Kumar Sahu, Gandharba Swain, and K Raja Sekhar. Performance evaluation
parameters of image steganography techniques. In 2016 International Conference on Research Advances
in Integrated Navigation Systems (RAINS), pages 1–8. IEEE, 2016.

[7] Alan Siper, Roger Farley, and Craig Lombardo. The rise of steganography. Proceedings of student/faculty
research day, CSIS, Pace University, 2005.

[8] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and Jan L.
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, pages 323–341, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

[9] Andreas Westfeld. F5—a steganographic algorithm: High capacity despite better steganalysis. In 4th
International Workshop on Information Hiding, pages 289–302. Springer-Verlag, 2001.

8


