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1 Introduction

Data security is often thought of as dealing with the secure transmission of information
from point A to point B. We have discussed in class how encryption can be used to prevent
adversaries from intercepting, understanding, and misusing the information we are trying
to send. In these cases, we are comfortable with the recipient of the message being able
to decrypt and use the original data or message we are trying to send. However, there are
many cases where instead we would like to keep the underlying information private while
still allowing the recipient to use the data for their own purposes. Take for example private
healthcare data. Patient healthcare data is often highly confidential information that should
not be disclosed to any third-party lest it be used in malicious ways. To protect against
this, healthcare providers will often use an encryption scheme known as homomorphic
encryption. This specific form of encryption allows certain computations to be performed
on the encrypted data to yield new data such that any computation performed on the
original decrypted data/message would have resulted in the same result as the decrypted
result of the encrypted computation. More specifically, given an encryption function E, a
decryption function D, some arbitrary (not necessarily arbitrary but we will talk about this
later) calculation C, a private key k, and some message m:

C(m) = D(C(E(m, k)))

The ability to perform calculations on encrypted messages helps both privatize the underlying
information while still giving access and computation power to parties that would like to
work with these types of confidential information. Another example use case of homomorphic
encryption are businesses in the realm of user advertising. Homomorphic encryption gives
these companies the ability to capitalize on user information without needing to actually
know the underlying information they are working with.

The notion of a homomorphic encryption scheme has been proposed in the 1970s [19], but
has only been constructed in partial forms until Gentry’s seminal paper [9] that made fully,
unlimited homomorphic computations possible. In this project, we explore the possibilities
of applying Fully Homomorphic Encryption (FHE) to the healthcare context from both tech-
nical and practical analyses, giving comments on the potential of popularizing this amazing
technology to advance both public health and public privacy.
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2 Background

In this section, we provide a survey of the mainstream FHE schemes from a high-level
standpoint, without delving into too much technical details. We then set out to discuss the
intrinsic limitations of these schemes and extend to the key challenges in computation over
homomorphically encrypted data in practice.

2.1 A brief overview of Fully Homomorphic Encryption schemes

The most commonly adopted FHE schemes are all based on the hardness of Learning With
Errors (LWE) problems for their security [10]. They could be categorized based on the type
of encryption applied to the plaintext:

• Bit-wise encryption, in which each bit of the plaintext is separately encrypted as a
ciphertext. A representative of this type is the Gentry-Sahai-Waters (GSW) scheme
[10], which encrypts every plaintext bit using a matrix.

• Word-wise encryption, in which multiple values are encrypted as a ciphertext. The
most notable schemes in this class are Brakerski-Gentry-Vaikuntanathan (BGV) and
Brakerski/Fan-Vercauteren (BFV) schemes [3][6], which construct their plaintext and
ciphertext spaces using two distinct polynomial rings. The two schemes are fundamen-
tally very similar, except that BFV hides the plaintext message in the most significant
digits and the BGV hides the message in the least significant digits of the ciphertext
(Figure 1). Another difference is that BGV calls explicitly a modulus switching pro-
cedure that rescales ciphertext modulus and controls noise, whereas BFV does not.
Otherwise, they can be viewed as different modes of the same unified scheme and they
perform at comparable levels [14].

• The Cheon-Kim-Kim-Song (CKKS) scheme [5] is a variant of word-wise encryption
designed to handle approximate value computation. It is basically very similar to
the BGV/BFV schemes, with a main difference that the plaintext is combined with a
small noise to be the encryption input. The CKKS scheme is suitable for computations
involving real and complex numbers, but the computations are only valid up to a certain
degree of precision [12].

All of the schemes mentioned follow a paradigm in which a noise is introduced in the en-
cryption to ensure hardness of LWE problem. Nevertheless, each homomorphic computation
introduces more noise which, if left untended, will garble the plaintext underneath and cause
a loss of information. A bootstrapping operation, which clears the noise from the cipher-
text without accessing the secret key, is required to ensure unlimited homomorphic opera-
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Figure 1: An intuitive diagram showing the encoding strategies of BFV and BGV schemes.
Adapted from Inferati [2]

tions. It is typically an expensive procedure that requires tens to hundreds of homomorphic
operations, and must be executed every time the noise reaches a threshold.

From a practical perspective, The BGV/BFV and CKKS schemes are most commonly used
since they support Single Instruction Multiple Data (SIMD), the packing of multiple data
into one ciphertext that renders them advantageous in efficiency. In the following part,
we gently unfolds the BGV/BFV scheme and use it as a basis to explore the challenges in
current homomorphic cryptography.

2.2 Main challenges to efficient homomorphic encryption

In the BGV/BFV scheme, each plaintext (in a vector form) is represented by a polynomial
with N coefficients, modulo some value t which is a prime power commonly referred to as
the plaintext modulus [14]. The corresponding ciphertext is a pair of ciphertexts, each with
N integer coefficients modulo a ciphertext modulus Q, Q ≫ t. A small, commonly Gaussian
noise term e is introduced in computing ciphertext ct = (ca, cb) from a given message m,
as required by the underlying Learning With Errors (LWE) assumption that guarantees the
encryption scheme’s security.

There are three types of operations on the ciphertext:

1. Homomorphic addition. This is done simply by polynomial-wise addition: ct0 + ct1 =
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(ca0 + ca1, cb0 + cb1).

2. Homomorphic multiplication. Multiplying two pairs of polynomials produces three dif-
ferent products: ca0ca1, ca0cb1+ ca1cb0 and cb0cb1. A key-switching operation is required
to convert this triplet to a pair of polynomials encrypted by the original secret key.
The key-switching operation is dominates the cost of the whole multiplication process.

3. Homomorphic permutations. This operation permutes the N plaintext values under-
lying the ciphertext. It is achieved by performing automorphism on each ciphertext
polynomial, and another key-switching to give the correct output.

Moreover, under the prevailing homomorphic encryption paradigm, each operation on the
ciphertext will introduce more noise. Apart from the need for bootstrapping procedures,
this limitation has another critical implication: to make sure that an adequate number of
operations can be executed before each bootstrapping step, the noise budget need to be
sufficiently large, and therefore a large Q value is required, typically at the order of 512- or
1024-bits.

The large bit width of ciphertext polynomial coefficients gives rise to two serious computa-
tional challenges. First, ciphertexts are large; for instance, assuming 512-bit width coeffi-
cients, representing a plaintext of N = 16K numbers require a ciphertext that takes 2MB
space, not to mention the secret key and other intermediates generated during computation
steps such as the key-switching. This large inflation factor exerts a huge overhead on the
memory of the system used for homomorphic computation. Second, the cost of modular
multiplication grows quadratically with the bit widths of the operands, hence having long
coefficients imposes a much higher computational burden. Together they drag down the
efficiency of homomorphic computation tremendously.

An antidote to these two problems is the Residue Number System (RNS) representation of
polynomials: by the good grace of the Chinese Remainder Theorem, we can express amod−Q
polynomial equivalently with k polynomials with smaller moduli q1, q2, ..., qk, provided that
these moduli are coprime and Q = q1q2...qk. This technique alleviates the computational
cost issue, but still invokes a big space demand.

Another key algorithm involved is the Number Theoretic Transform (NTT), which is
the modular-arithmetic variant of the discrete Fourier Transform algorithm. NTT speeds up
polynomial multiplication from O(N2) to O(Nlog(N)) modular operations and is critical in
homomorphic computation. Furthermore, polynomial addition and automorphism can also
be performed in the NTT domain, hence NTT is used as the first step in nearly all important
homomorphic operations, including the key-switching step. The cost for this ubiquitous
operation, however, is high and has been an important problem in the literature [11] [16]
[18]. Typical algorithms, based on butterly operations, introduces complex dataflows and
pose a challenge to the memory system [7]. This is particularly tricky in the homomorphic
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encryption context, in which operands and intermediates are all large in size.

To summarize, the nature of cryptography dictates the computational barrier in applica-
tions of fully homomorphic encryption. The requirement for bootstrapping and sufficient
noise budget leads to unconventionally large bit width for ciphertexts, which causes immense
challenges for both computation speed and memory management. NTT as an ubiquitous
prerequisite to homomorphic operations introduces additional complications in data man-
agement. As such, given the fundamental structure of homomorphic encryption, the key
point for achieving a practical performance lies in handling data and computation schedules,
which may not be fulfiled to a satisfactory degree with a standard computing hardware like
a CPU or a GPU.

2.3 The state of the art in FHE acceleration hardware

Owing to the unique challenges in homomorphic encryption, a specialized computer archi-
tecture is needed to accelerate it to near-plaintext computation speed. Towards that end,
various FHE accelerators have been proposed. In this study we cover two of them - F1 and
its successor, CraterLake.

F1 [7] is a hardware accelerator designed for both performance and versatility in FHE pro-
grams. It has three distinguishing features:

1. F1 optimizes the efficiency of basic primitive operations, such as modular arithmetic,
NTT and permutations. Acknowledging the fact that most steps in homomorphic com-
putation are actually compositions of these basic operations, F1 designed specialized
functional units and memory architecture to specifically target these primitives. This
design also renders F1 capable of accelerating a wide variety of algorithms.

2. F1 recognizes the importance of data and memory management in its design, and
therefore implements large, high-speed memory modules while minimizing data move-
ment and improving data re-use through custom scheduling software that explicitly
manages the computation and use memory bandwidth economically.

3. F1 comprises a novel compiler that bridge memory optimization and programmability
of the chip. A domain-specific language (DSL) is implemented for writing F1 programs,
while the F1 compiler translates the program into optimized flow of homomorphic
encryptions.

Geared with these optimizations, F1 is the first system to accelerate complete FHE programs
and out-performs latest software implementations by gmean 5400× and up to 17000×.
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CraterLake [17] builds on F1 to make FHE more accessible for very large ciphertexts and
deep computations including deep neural networks like ResNet and LSTMs. Employing an
extremely wide, de-clustered architecture that reduces data footprint, new types of functional
units that take advantage of boosted key-switching algorithms (for BGV/BFV) and reduce
auxiliary data generated, and a vector chaining technique that enable many concurrent
operations in the functional unit pipeline, CraterLake is able to attain a 11.2× speedup over
F1, and 4600× speedup over a CPU, in deep computation benchmarks.

3 Related Work on healthcare applications

There exist a few studies exploring the use of Homomorphic encryption in healthcare, but
the attempts are as nascent as the technology itself. Kocabas et al. [15] used both Gentry’s
scheme and a BGV-scheme setup to calculate the average heart rate of a patient using ECG
data on cloud storage. While simple operations like averaging could be computed in real
time with an approximately 70 ms latency, they found a huge storage expansion of 217x
which necessitates a customized cloud storage mechanism. Sun et al. [21] proposed a four-
layer mobile healthcare framework and experimented on three types of computation: average
heart rate, long QT syndrome detection and chi-square tests. The reported latency for these
calculations ranged from several hundred to over one thousand milliseconds. Jiang et al. [13]
implemented an IoT-and-cloud system that performs diabetic retinopathy on homomorphic
encrypted data, based on a customized scheme.

Apart from standalone systems, homomorphic encryption is also integrated in other collabo-
rative analytics system design, most prominently federated learning. Chen et al. [4] devised
FedHealth, a federated transfer learning framework for wearable healthcare, in which additive
homomorphic encryption was employed to aggregate data. They demonstrated FedHealth
in the context of human activity recognition and Parkinson’s disease auxiliary diagnosis. In
FAMHE, a federated analytics system proposed by Froelicher et al. [8], local parties compute
partial results and use homomorphic encryption to secure these intermediaries for further ag-
gregation. FAMHE was utilized to perform vital biomedical analysis including Kaplan-Meier
survival analysis in oncology, and genome-wide association studies in medical genetics. Both
studies reported high accuracies comparable to those in conventional frameworks, showing
that federated learning with homomorphic encryption can achieve both privacy and accuracy
at the same time.

In summary, it isn’t hard to see the various inadequacies of homomorphic encryption that
we discovered. It still runs very slow, produces large keys and ciphertexts, and can perform
only limited types of operation such that all applications are customized to fit one or two
analytics tasks. Purely homomorphic encryption-based systems are largely limited in pro-
cessing capacities, and less experimented with true data; whereas homomorphic encryption
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with federated learning might prove to be a more practical solution currently. In all, there
are huge spaces for improvement if the best technologies can be used, but significant barriers,
cost-wise and expertise-wise, are in place.

4 Proposed security policies for FHE in healthcare

Having reviewed the technological aspects of FHE and major needs in the healthcare sec-
tore, we propose some simple security policies for managing homomorphic encryption in the
healthcare sector:

• Only the owner of the data should be able to decrypt it/have access to the secret key.
This relates to confidentiality as the party that is manipulating the data won’t be able
to attain the underlying private information.

• Users of the data should be able to perform meaningful computations on the data while
it is encrypted. This relates to availability as the users know they can compute rela-
tionships between the encrypted data that hold the same functionality as relationships
between the decrypted form of the same data.

• Owners of the data should be able to decrypt the result of a computation on an
encrypted message and receive the same result as simply performing the same compu-
tation on the original decrypted message. This relates to availability as it ensures the
definition of homomorphic encryption holds and users can properly interact with the
data.

• Users of the data should not be able to perform computations on the encrypted data
and alter the underlying encrypted information. This relates to integrity as the original
decrypted data should remain unmodified and untouched to preserve the confidential
information.

5 Analysis of FHE Schemes on Healthcare Data

To get a better understanding of the applications and associated limitations of the use of
FHE in healthcare, we ran a test to study the efficiency of two different FHE schemes for
potential healthcare data. UK Biobank is a large long-term biobank study in the United
Kingdom that has collected various medical data on thousands of patients. While getting
access to the actual data requires an account, and much of the data is in a format difficult
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to clean, we have used the User Guide [1] for a list of the type of medical data the Biobank
collects.

For our analysis, we considered visual acuity (i.e. 20/20 vision), intraocular pressure, BMI
(Body Mass Index), total cholesterol level, and sex (male or female). While we did not gain
access to actual data points from the UK Biobank, we researched the distributions for each
of these data points, and created random values for n potential patients.

With a set of dummy data that could resemble a real analysis needed by a hospital or research
facility, we sought to create a linear classifier for these patients based on their values for each
feature. To accomplish this, we considered and analyzed multiple options. The first was
to simply perform all of this work directly, without using any type of fully homomorphic
encryption. This process would mimic a hospital or medical research group performing data
calculations on their own. The alternative was to use one of two FHE schemes to perform
the calculations, acting as an untrusted server to which a hospital or medical research group
could offload the computations. Both BFV and CKKS encryption schemes were tested in
this analysis. The two sections below go into further detail on how we tested these schemes,
and an overview of our results.

5.1 BFV

For our analysis of BFV, we used the py-fhe library on GitHub [20]. Our experiment
considered two methods: performing the calculations for a linear classifier without any BFV
and sending the encrypted data of each patient to the untrusted server to perform the
computations (a weighted sum of each encrypted data point) for the linear classifier. In
practice, both methods were run locally, so our time comparisons do not consider the time
taken to send the encrypted data to an FHE server and to get the encrypted results back
from the server. However, the efficiency of FHE computations is the key area of interest
here, so we leave sending and receiving time analysis to future research.

It is also important to note here that although BFV can technically handle real numbers,
it is rather inefficient on numbers that are not integers. So for our BFV analysis, we have
ensured that all of the data is represented as integers, and each weight is an integer. Thus,
the weighted sum of each data point is also an integer.

In Figure 2, we have a plot showing how computation time changes based on the number
of patients in the data set and whether the owner of the data performs the computations
directly or uses an FHE server to obtain results.

Clearly, using this implementation of BFV to calculate the weighted sums and perform linear
classification takes significantly more time than if the data owner performs the calculations
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Figure 2: Comparison of runtimes between plaintext computations and BFV

directly. For example, for 5,000 patients, using this BFV library takes over 15 times as long.
It is also important to note that BFV here is significantly restrictive, as integers are the only
real data we can operate on in practice.

In the next section, we will show how we used CKKS and analyze its results.

5.2 CKKS

For our analysis of CKKS, we used the same py-fhe library on GitHub [20] that we used
for BFV. Since CKKS works efficiently on real numbers, we can leverage this to perform
computations on our data involving real numbers, such as standardizing our values.

We analyzed CKKS under two different methods. The first was using the same exact dataset
as we used with BFV, again taking weighted sums and performing a linear classification.
Similarly, this dataset is only comprised of integers. However, before sending the data to
the FHE server, the owner of the data first standardizes all values to have mean µ = 0
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Figure 3: Comparison of runtimes between plaintext computations and CKKS

and standard deviation σ = 1. In this process, the owner of the data sends the encrypted,
standardized data to the FHE server, where we use the CKKS library to perform all of our
desired operations.

The second method was to perform the standardization in the CKKS process. Since this
CKKS does not directly support division, we precompute the mean µ and standard deviation
σ for each data point. The owner of the data then sends each encrypted datapoint, as well
as each encrypted µ and each encrypted 1/σ. With the CKKS library, we then compute
(x− µ) · 1/σ for each datapoint x, and compute weighted sums and linear classification.

In Figure 3, we plot 4 different scenarios: performing linear classification directly on plaintext
without normalization, performing linear classification on the plaintext with normalization,
using CKKS with the data standardized beforehand, and using CKKS for linear classification
and standardization.

We can see here that performing the computations directly on the plaintext, with or without
normalization, is by far the fastest. We can also see that when offloading computations to
CKKS, it takes roughly twice as long when the normalization computations are also offloaded
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to CKKS (30 seconds vs. 60 seconds for 100 patients).

5.3 Discussion of Results

As we can see from the two experiments above, FHE computations take significantly more
time and also currently require significant preparation on the owner of the data to make sure
the data works for the specific FHE scheme they are trying to use.

It is also important to consider the differences in efficiency between BFV and CKKS. For
5,000 patients, the BFV library we used performed the desired calculations in just under 16
seconds. On the other hand, the CKKS library took over 60 seconds to perform the desired
calculations for only 100 patients. It is also important to note that realistically, computations
on medical data and any intermediate values often contain floating point numbers, so this
runtime slowdown with CKKS is a serious concern.

Another key point here is that relative to the variety of computations we may perform on
medical data, linear classification is very simple. More realistic neural networks or other
more complicated algorithmic techniques may take substantially longer to perform, both on
integers and real numbers. There is clearly a tradeoff here between offloading computations
you do not want to or cannot perform on your own, and sacrificing time by doing so.

6 Conclusion and Future Work

This paper has shown a review of some popular FHE schemes, an introduction to FHE
hardware accelerators F1 and CraterLake, an overview of security protocols in the healthcare
industry, and an example test of how two FHE schemes (BFV and CKKS) can be used on
potential healthcare data. We compared the efficiency of schemes on simulated data to
understand how data size and pre-processing steps affect FHE computation times. There
are still significant breakthroughs needed to make FHE more efficient and many potential
avenues for future work.

One limitation for our analysis is that all encryption and calculation work was completed
locally. Due to the advanced software, hardware, and knowledge needed to perform homo-
morphic encryption, it is more likely that a medical facility would use a third party provider
to perform the FHE computations via an untrusted server. Therefore, it would be beneficial
to include the time necessary to both encrypt and transmit the data to and from the host
and third party in the analysis. Future work could include comparing the computational
pros and cons between running FHE locally and remotely. This work could also explore any
pre-processing steps that can be completed locally that would shorten the transmission time
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to and from the third party.

Our analysis was based on a relatively simple algorithm, linear classification. Although this
algorithm is used significantly in practice, it is not the only computation used in the real
world. More work can be done to test FHE schemes on more complicated algorithms such
as neural networks and image recognition. Intuitively, one could hypothesize that more ad-
vanced algorithms would require longer processing time on standard computing hardware.
Any analysis using these types of computations should also introduce tools and methods
specializing in optimizing FHE computation speeds. For example, one could simulate per-
forming advanced computations with F1 or CraterLake. This future work could explore
the technical and operational feasibility of implementing these acceleration technologies in
a real-world setting.

Lastly, with security being a top priority in the healthcare sector, it is important to con-
duct serious review of how secure FHE could be when utilizing a third party server. One
could review the type of information an adversary gains through various hacks and if this
information offers any clues to the structure and nature of the underlying data. Within the
realm of trust and security, future work also includes exploring how the owner of the data
can verify that the results given by the FHE server are valid. Surely, one could perform the
computation locally and compare the results. However, this would defeat the purpose of
outsourcing computational work to a third party.
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