
Traffic Analysis of Spotify

Kameron Dawson, Antony Hernandez, Tomisin Ogunfunmi, Tejal Reddy

May 11, 2022

Abstract

As encryption techniques become increasingly sophisticated and standardized, one might think
that it would be impossible for an adversary to obtain information about user actions from an
encrypted stream. However, traffic analysis attacks — attacks that rely purely on observing the
number and timing of packets sent along with metadata — have proven to be a strong adversarial
tool for predicting user actions for audio and video streaming services. In this paper, we investigate
the efficacy of traffic analysis attacks on the Spotify Web Player to predict the song a user is
streaming. By training a variety of neural networks on the non-encrypted payload size and timing
of packets being sent between the client and Spotify server, we are able to predict the correct song
that a user is playing from a song-set size of three with an accuracy of up to seventy-five percent.
Taken together, our results compare the performances of different neural networks to provide a
heuristic of what classification models worked the best for performing a traffic analysis attacks on
music streaming services. This paper suggests that there is potential promise in the realm of user
action prediction for audio streaming services.

1 Introduction

Traffic analysis has been a long researched topic. From this research, considerable improvements have
been made to improve the general security of packets. Today, many packets being sent from devices
are heavily encrypted to prevent adversaries from gathering information and compromising the secu-
rity of the packet sender and receiver. However, even with this encryption, adversaries are still able
to learn relevant information just from the timing of the packets [5]. When packets are sent, they
are often sent in a stream or sequence which is the case for many video streaming services, websites,
and requests. Using this, adversaries do not have to decrypt the packet content to obtain vital and
identifying information about the users at the endpoints of communication.

Some of this identifying information includes knowing when an individual is in their home, unmask-
ing relationships, identifying preferences, and general monitoring [6]. By observing when packets are
being sent and where they are being sent to, an adversary can find all of this information by simply
observing packets through a network. As more and more individuals conduct their work in areas with
unprotected networks, this has become an even larger problem.

In this paper, we describe an experiment where we simulate an adversary analyzing packets on a
network. Specifically, we will be analyzing packets sent through the encrypted channel created when
a user accesses Spotify’s services [9]. In this experiment, we collected data from a set of songs and
inputted this data into a variety of machine learning models to help identify the patterns in various
songs. Using these, we determined which model resulted in the highest accuracy in identifying when
a user is listening to a specific song based on packets sent through an encrypted stream. Before start-
ing the experiment, we hypothesize that we will be able to successfully identify which song a user is
listening to based purely on the packet’s timing, payload size, and metadata.

2 Related Works

Our work draws the most on the Beauty and the Burst: Remote Identification of Encrypted Video
Streams paper [8]. This paper analyzes video streaming from Youtube, Netflix, Amazon, and Vimeo

1



and presents accurate packet burst analysis to accurately identify the video being streamed. They
measured the bursty, on-off patterns of encrypted streams and identified a strong correlation between
segment requests from clients and the size of underlying segments. For example, during the buffering
period of a video, segment-files are found to be fetched at a higher rate (to buffer the actual presenta-
tion), which shows a potential way to predict patterns of burst. They exploit the prevalence of these
burst patterns, also known as the ”fingerprint” of the video stream, to identify the videos streamed. To
help with identification, they created a machine learning model using a convolutional neural network
to classify video streaming packets.

3 Permissions

This experiment was performed using personal, paid Spotify accounts. Additionally, all computers
used for this project were the personal property of the authors, thus all the data sent to these devices
through legal practices is analyzable. As it is common knowledge that packet data across a network is
available and readable by all computers, our project does not attempt to access restricted data from
Spotify servers. Rather, we simply look to read and find patterns within the data that Spotify sends
to our computers.

4 Assumptions

There are several assumptions we are making as we conduct this experiment.

(1) We are assuming that we are receiving every packet being transmitted between our personal
computers and Spotify. In the code for our model, we are collecting IP addresses to sniff packets
from using the Network tab in Chrome DevTools. Although we thoroughly searched this tab for
all IP addresses relating to Spotify, there is still a chance we may have missed a few.

(2) Since we are replicating an eavesdropping adversary in this experiment, we are assuming that
the adversary will be observing the packets of an individual in a ”closed-world” setting. Being
in a ”closed-world” means that we can assume the adversary knows the small list of songs being
streamed from Spotify for the experiment.

(3) We are assuming that the songs being streamed from Spotify are deterministic. This means that
the packets being sent from Spotify when streaming the song two different times are similar. No
defense mechanisms (like random noise) have been used to treat the packet bursts.

5 Goals

Our goal for this study was to prove that performing a traffic analysis on encrypted Spotify packets
would allow for an adversary to break a CPA security-like problem and have a strong chance of
predicting the song that a user is listening to by observing the packet data. The main difference is
that instead of attempting to break Spotify’s song encryption, our goal is to predict a song based off
of an analysis of the packet traffic that corresponds to a song with a higher than random accuracy.
That is, the adversary wants to win the game in figure 1.

2



Figure 1: Spotify CPA Game

3



6 Security Policy

The security policy of Spotify is detailed below. Our goal is to compromise part (a) of the confidentiality
goal.

(1) Confidentiality:

(a) Only the Spotify user can stream a specific song and only they will know exactly what song
they are streaming.

(b) The user is the only entity that can add or remove songs from their music library.

(c) When a user begins streaming, an encrypted channel is created between Spotify and the
user’s streaming device.

(2) Integrity

(a) The song being streamed should be correct, and its packets should not be tampered with.

(b) The state of the user’s music library should be correct and reliable.

(c) No adversary is able to insert packets into the encrypted stream.

(3) Availability

(a) The user can stream songs at any time.

(b) The user can add or remove songs from their library at any time.

7 Experimental Design

7.1 Overview

There are many publicly available pieces of information included with a packet that we could use in
a side-channel attack of Spotify, but we decided to look specifically at packet payload size and timing
because this is what has been done for similar attacks on video streaming services (see related work).
Packet payload size and timing allows us to identify and learn patterns based on the compression
algorithm that Spotify uses. The process for collecting and analyzing this data is described below.

We decided to use the Spotfy web player on the browser, rather than the desktop or mobile apps
because it allowed us to more easily see what IP addresses the HTTPS requests were being sent to
and integrate with the other tools we used in our experiment (more details below).

The first step in the packet sniffing, a technique whereby packet data flowing across a network is
detected and observed, was to find the IP address from which packets were sent from the Spotify web
player in order to setup an IP address capture filter to only capture packets from the web player.
At first we ran a traceroute command on the Spotify Web Player Hostname. However, we noticed
that we hardly received any data in our captures when we should have received much more. After
closer examination of the web player, we realized Spotify uses Akamai’s CDNs, which means that the
web player uses the IP address of their closest edge server, so the IP address could be different for
each streaming session. Thus, we looked at the network tab on the browser’s developer tools to find
the actual IP addresses the HTTPS requests were being sent to and built a list of possible IP addresses.

Another issue we encountered is that we realized that Spotify heavily relies upon the browser cache,
so in order to capture all new data we have to clear the browser cache first; otherwise we will be
streaming cached data rather than receiving new data over the network. We were now able to capture
all new packets by filtering by all the possible IP addresses.

In our first version of the data analysis of packet captures we manually looked at the data to identify
characteristics and patterns that allow us to infer information about the Spotify user. We did so by
exporting Wireshark captures to an Excel spreadsheet and graphing the result. This was useful for
identifying easy pieces of information, including:

4

https://open.spotify.com/


• Whether a song is currently being streamed, which is easily identifiable because significantly
more data is received than when not streaming a song.

• If a user is a free or premium user, which is easily identifiable using the fact that free users stream
at a lower bitrate than premium users (128 kbit/s versus 256 kbit/s on the web player), so the
amount of data received for a premium song stream is double that of a free song stream.

• The selected audio quality as more data is received for higher audio quality.

However, we wanted to be able to identify hard pieces of information, including what song is being
played, if an advertisement or a song is being played, what advertisement is being played, and other
user actions (e.g. creating playlists, looking at someone’s profile, etc). Thus we decided to build
and train machine learning models to better identify patterns in the data. To limit the scope of this
project due to the short time frame we had to work, we decided to only try to identify what song is
being played based on the packet captures, rather than looking at many different identifiable pieces of
information.

7.2 Tools

Detailed below are the tools we used to collect our data and build and train our machine learning
models.

7.2.1 Wireshark

Wireshark is a network analyzer tool that allows a user to observe what packets are being sent and
received on their network [11]. The parts of a packet are the body (typically encrypted) and the
header. The header includes the source IP address, destination IP address, time to live, network layers
and protocols, length of the body, and more. Additionally, included with a packet captured through
Wireshark is the time it was received. An example session capture can be seen in figure 2. Wireshark
helped us visualize and understand the different parts of packets and what information is included
with a capture, as well as testing out different capture filters to isolate packets sent from Spotify.

Figure 2: A sample live packet capture session for a song on Spotify.

7.2.2 Spotipy

Spotipy is a Python library that allows the use of the Spotify Web API [3] in Python scripts. We used
Spotipy in our Python code to automate the streaming of songs from Spotify, rather than manually
streaming songs using the Spotify web player in the browser, which is more time-consuming, less precise
for data captures, and not feasible for building a large dataset.

7.2.3 Scapy

Scapy is a Python library built on top of Wireshark that allows the capture of packets from within
Python scripts [4]. We used Scapy in our Python code to automate the process of sniffing for packets
received from Spotify.

5



7.2.4 Selenium

Selenium is a Python library that allows for the automation of web browser interaction from Python
scripts [2]. We used Selenium to automate the process of opening the browser, clearing the cache, and
beginning playback of a song on the Spotify web player.

7.2.5 PyTorch

PyTorch is a machine learning framework for Python that offers many tools and resources to build and
train machine learning models [1]. We used PyTorch to train our models to classify a song capture.

7.2.6 Seaborn

Seaborn is a python visualization library for making statistical graphics [10]. We used this library to
plot the heatmap in Figure 7.

7.3 TSAI

TSAI (Time Series AI) is a Python library built on top of PyTorch that includes the implementations
for many state-of-the-art machine learning models for time series classification, regression, forecasting,
and more [7]. We used TSAI to test different models for song classification.

7.4 Data Generation

In order to develop a proof of concept before spending significant resources and work-hours on devel-
oping a model, and due to the constraint of our limited compute power, we decided to only include
three songs in our classification. Additionally, our limited compute power and the variable lengths of
songs led us to only capture data for the first 60 seconds of a song.

The first step to creating a machine learning model with high accuracy is to create a high quality
data set with many data points using these constraints. Fortunately, the nature of our data allows for
the automatic generation of data as the data consists of packets from streaming a song from Spotify.
The process for data generation is as follows:

(1) Use the Selenium web driver library to open Google Chrome and clear the browser cache.

(2) Use Selenium to navigate to the Spotify web player in browser and click on the play button to
start a playback.

(3) For each of the three songs, use the Spotipy library to begin playback of the song on the web
player.

(4) Use the Scapy library to begin packet sniffing for 60 seconds, filtering for all of the Spotify web
player IPs.

(5) Store the data from each song’s packet sniffing as a list of lists, where each list element is one
song capture and contains tuples for each packet with the tuple elements being the arrival time
and payload size of the packet.

(6) Once one capture is collected for each song, open the dataset pickle file if it exists and append
the new data to the existing data; otherwise create a new pickle file to store the new data.

This generates and stores one capture for each song in our classification, which will each be one data
point for our model, so we repeat the process as often as possible to generate many data points. The
limiting factors in this generation process are that generating one song capture takes 60 seconds and
that we can only stream one song per Spotify account, so using one Spotify account we can generate
60 data points per hour. Additionally, periodically the Spotify web player uses IP addresses that we
previously did not include in our filter, so we have to manually add it to our list as currently we could
not find a way to automatically find the IP address the web player was using.

6



7.5 Data Pre-Processing

Collecting many high-quality data points is an important factor affecting a machine learning model’s
performance, but just as important, if not more so, is the pre-processing of the data that encodes the
data to be inputted to the model.

In our first iteration of the data pre-processing, each data point inputted to the model was just a
list of packet payload sizes for one song capture. This led to poor performance with an accuracy of
just 33.00% on the test data set, which is not any better than if given a song capture we had just
guessed the song. The reason this feature encoding is a poor choice is because it only takes into con-
sideration the relative order of packet arrivals, but does not encode that the packets arrive at different
times. This is a crucial piece of information to leave out because the time difference from one packet
to the next could be a few microseconds or 10 seconds. Therefore, we had to revise our view of the
data and find a better feature encoding.

We realized that a song capture is basically a time series with packet payload size mapped over arrival
time. Therefore, each data point is constructed to have one feature (packet payload size), which is a
list where each list entry represents the total payload size received at that time step. For example, for
a 60 second capture with a time step of 0.1 seconds there are 600 list entries.

The arrival time of each packet is in the format of a Unix timestamp, which is the number of seconds
that have elapsed since January 1, 1970, so we made the relative arrival time for the first packet
received for a song capture be zero seconds and for all subsequent packets be the packet arrival time
minus the arrival time for the first packet received. We count a packet payload size towards the time
step in which its relative arrival time is closest to. We construct the feature for a data point by looping
through the total number of time steps for the 60 second capture and if there were packets received
at that time step we add the total packet payload size to the data point’s list; otherwise it adds zero
for that time step.

Given the input constraints of the models we are using, the final formatted input data is a three-
dimensional numpy array, where the first dimension is the number of data points, the second dimen-
sion is the number of features for a data point, and the third dimension is the number of time steps
for a feature. In our case our dimensions were (111, 1, # time steps) because we generated 111 data
points (37 for each song), had one feature (packet payload size), and the time steps were one of the
hyperparameters that we experimented with during training. The final pre-processing done was to just
remove any duplicate or empty data points from the data set that may have accidentally been added
during the data generation since we were generating data on multiple machines so we had to employ
version control to combine our data sets.

7.6 Machine Learning Models

Since the focus of this paper is not machine learning, but rather the security analysis of a side channel
attack on Spotify using machine learning as a data analysis technique, we decided to not develop our
own models. Instead we used the TSAI library because it contains state-of-the-art time series classifi-
cation models implemented in Python.

We experimented using different models from the library with different model hyper-parameters, as
well as varying the number of time steps in our data pre-processing to see what combination produced
the model with the highest accuracy on the test data set. Our test data set was constructed from
randomly selecting 20% of the data points from our overall data set, with the rest being used for the
train data set. We used 25 epochs to reduce the training time.

8 Results

The purpose of the experiment was to classify a song capture (collection of packets received) of the first
60 seconds of a song as one of three possible songs. We used 9 different time series classification models
from the TSAI library to complete this task. The model accuracy results with different time steps used

7



in data pre-processing are shown in the tables below. Note that tables 3 and 4 use fewer number of
data points, this is due to our computing power and it will be further explain in the discussion section.

Model Number of Data Points Accuracy
ResCNN 111 50.00%
ResNet 111 40.91%

OmniScaleCNN 111 40.91%
FCN 111 36.36%

LSTM FCN 111 36.36%
XceptionTime 111 36.36%
InceptionTime 111 36.36%

mWDN 111 36.36%
LSTM 111 36.36%

Table 1. Time step of 1 second.

Model Number of Data Points Accuracy
ResNet 111 54.55%
FCN 111 45.45%

LSTM FCN 111 40.91%
OmniScaleCNN 111 40.91%
XceptionTime 111 36.36%
InceptionTime 111 36.36%

ResCNN 111 36.36%
mWDN 111 36.36%
LSTM 111 36.36%

Table 2. Time step of 0.1 seconds.

Model Number of Data Points Accuracy
XceptionTime 24 75.00%

FCN 111 50.00%
LSTM FCN 111 45.45%

InceptionTime 36 42.86%
ResNet 60 41.67%

ResCNN 21 41.67%
mWDN 18 33.33%
LSTM 111 31.82%

OmniScaleCNN None None

Table 3. Time step of 0.01 seconds.

Model Number of Data Points Accuracy
LSTM 15 33.00%
FCN None None

LSTM FCN None None
ResNet None None

ResCNN None None
InceptionTime None None
XceptionTime None None

OmniScaleCNN None None
mWDN None None

Table 4. Time step of 0.001 seconds.

The model column is the name of the model run, the number of data points is the amount of data
used in training the model, and the accuracy is how well the model performed on a test data set.
The accuracy was determined by first training the model on the training data set, then inputting data
points from the test data set to the trained model, outputting a classification, and checking if the

8



classification was correct. For some model-time step combinations we use less data points, and in some
cases are not able to train a model at all, because of our limited compute power. This is explained in
greater detail in the discussion section.

Figure 3: Cross correlation heatmap obtained for captured data.

In addition to the machine learning models, we calculated the cross correlation between the three
different songs that we used. We did this by first gathering all of the capture data into single lists
for each song, and then used the heatmap function from the Seaborn library to create the heatmap
in Figure 3. The heatmap showed us that the packet captures between the different songs have a
very low correlation and that packet captures for the same song have a very high correlation. This is
promising since this potentially means that the machine learning models can be fine-tuned and trained
with more data to produce even higher accuracy results. This is because the low correlations among
different songs found in this heatmap could signify that the models can perform well in classifying
different songs, and the high correlation within a song could signify that the models can perform well
in classifying captures from the same song as the same song.

9 Discussion

9.1 Results

The results of our experiment show that the accuracy of the models generally increase as the time step
gets more precise. This is because as the number of decimal places of the time step increases we are
able to encode more information about the packet arrival patterns. This is a significant factor on the
model performance because, for example, Spotify sends about 325kB of data for premium users every
10 seconds, which means that there is a large cluster of packets within a one second time frame every
10 seconds. If we clump packets together by the second or even the tenth of a second, then all the
captures just look the same, so more precision is needed to differentiate the captures.

The maximum available precision of the arrival times is 0.000001 seconds, so we did not encode the
maximum amount of precision possible in our model. This is due to compute power constraints. We
ran the models on a personal computer with a GPU with 4GB of RAM, and with every increase in
precision we have a ten-fold increase in time steps for each data point. In Tables 3 and 4 we can see
that we had to reduce the number of data points used in order to actually be able to complete the
training of the model given the memory constraints. In some cases, like the OmniScaleCNN model in
Table 3 and all the models except for LSTM in Table 4, we were not able to train the model at all,
regardless of the number of data points.

For some models (e.g. ResNet from a time step of 0.1 to 0.001 seconds) the accuracy decreased
even though the time step precision increased, which was caused by the decrease in the number of

9



data points used due to memory constraints, as described in the previous paragraph. Some models
had a small decrease in accuracy even though the number of data points used stayed the same and
the precision of the time step increased (e.g. LSTM from a time step of 0.1 to 0.001 seconds), which
may be attributable to the small data set used, so there are fluctuations in accuracy from one training
to the next. However, in these cases the decreases were small, so they do not detract away from the
success of this attack. The model LSTM did not significantly increase in accuracy from a time step of
0.01 to 0.001 seconds, but this may be because of the small number of data points used.

The benchmark we used to determine if the accuracy of a model was good is whether or not it was
better than just guessing. Given a song capture and knowing it could be one of three possible songs,
then by guessing we will have on average an accuracy of 33.00%. Applying this benchmark, we can see
that the LSTM model with a time step of 0.01 seconds performed worse than guessing, but only by
1.18%. The LSTM model with a time step of 0.001 seconds and the mWDN model with a time step of
0.01 seconds performed the same as guessing. The other 24 model-time step combinations performed
better than guessing.

In summary, of the 27 model-time step combinations we ran, 1 performed worse than guessing, 2
performed the same as guessing, and 24 performed better than guessing. The best performing model
was XceptionTime with a time step of 0.01 seconds at 75.00% accuracy on the test data set, but it
was on a smaller data set, so more testing would be needed to determine if this accuracy is repeatable.
However, with 88% of the models performing better than guessing and the general increase in accuracy
as the precision of the time step increases, the results show that this network analysis attack on Spotify
is possible and can be successful.

9.2 Defense Mechanisms

There are many possible defenses against this type of attack, but we will only discuss the two most
popular and easiest to implement. The first strategy is to pad packets to be of uniform sizes or to send
packets at fixed timing intervals to blur the traffic features. This approach works by making all song
captures look the same, so a machine learning model would not be able to distinguish between the
capture from one song and another song. The second strategy is to randomly send dummy packets to
obscure any patterns with noise. This approach works by making the captures for the same song look
different, so a machine learning model would not be able to learn to classify all captures for one song
as that song.

We tested the effectiveness of these strategies by artificially constructing fake song captures. For
the first strategy, we took 10 data points from our data set and padded every packet to be the same
size, then inputted it into our most successful model XceptionTime. The result was that it only cor-
rectly classified one of the 10 data points for an accuracy of 10.00%, which was significantly worse
than guessing and worse than the model accuracy of 75.00%. For the second strategy, we also took 10
data points and randomly inserted packets of random size into the capture, then inputted it into Xcep-
tionTime. This had an accuracy of 20.00%, which was also worse than guessing and the model accuracy.

The question is if these strategies are successful, then why does Spotify not employ them. The reason
may be because of the performance hit of these defense mechanisms. Looking at one song capture, the
largest packet size was 22469 bytes and the smallest was 80 bytes, so the first strategy of padding all
packets to be the same size would introduce a significant performance hit. One solution to this prob-
lem could be to revise the compression algorithm and way that Spotify sends data to better partition
the data, making all the packet sizes uniform without having to pad. The second strategy also has
a performance cost since it would require sending more packets with data that is not actually being
used, and there are strategies to filter out the noise to determine which packets are actually useful
data, so may be a less effective strategy in the face of advanced adversaries.

In summary, both defense mechanisms are successful in preventing our attack, but the most viable
strategy for Spotify would most likely be to revise how they partition their data for transmission so all
packets are of the same size without needing to pad, which would avoid the performance cost. It could
be the case that Spotify may determine that this attack does not pose a significant security risk as

10



the ability to know what song a user is listening to is not a leak of sensitive information, so a defense
mechanism is not needed.

9.3 Future Work

Due to our limited computing power and time, we limited our pool of songs to three, capture length
to 60 seconds, features to one (payload size), data points to 111, and time step precision to at most
0.001. Future work will focus on getting more compute power (most likely from the cloud) to train
models with more songs, full song lengths for captures, more features than just payload size, more
data points, and greater time step precision. The first focus would be on time step precision and num-
ber of data points as the results showed these to be the most promising ways to increase model accuracy.

In addition to these changes, we will spend more time fine-tuning the model hyper-parameters in
order to achieve higher model accuracy. Once we have built and trained a reliable and accurate model
for song classification, the next steps would be to analyze Spotify packets on the open Internet to test
how well this model might perform if we are not able to capture every single packet. In this experiment
we were able to capture almost all of the packets because we were packet sniffing on our own device,
which may not be the case on the open Internet.

Finally, we would like to develop models to identify other user actions and behaviors on Spotify,
with the most interesting being what ad is being played as this could have huge security and monetary
implications if successful.

10 Conclusion

This paper describes the machine learning models created to analyze the packets sent through the
encrypted channel created between a personal computer and Spotify. In our experiment, we pre-
processed data using a variety of Python packages and tools. We then inputted this data into a variety
of machine learning models to determine which model yielded the highest accuracy with predicting
a song based on the packets being sent through the encrypted channel. Through this experiment,
we learned just how much information can be found through simple traffic analysis when there is no
protection regarding the timing of packets.

11 Author Contributions

Each teammate contributed to each part of the project, however, we would like to acknowledge
Kameron Dawson and Antony Hernandez for their work on the experiment and technical analysis,
as well as Tejal Reddy and Tomisin Ogunfunmi for their research on similar experiments and projects.

12 Acknowledgements

We would like to thank Professor Ron Rivest and Professor Yael Kalai for teaching us this semester.
We would also like to thank the 6.857 TAs for their feedback and help in the ideation of our project.

References

[1] Pytorch. https://pytorch.org/.

[2] Selenium. https://pypi.org/project/selenium/.

[3] Welcome to spotipy!. https://spotipy.readthedocs.io/en/2.19.0/.

[4] Philippe Biondi and the Scapy community. Scapy. https://scapy.net/.

[5] Saman Feghhi and Douglas J. Leith. A web traffic analysis attack using only timing information.
IEEE Transactions on Information Forensics and Security, 11(8):1747–1759, 2016.

11



[6] S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and N. Borisov. Low-cost side channel remote traffic
analysis attack in packet networks. In 2010 IEEE International Conference on Communications,
pages 1–5, 2010.

[7] Ignacio Oguiza. tsai - a state-of-the-art deep learning library for time series and sequential data.
Github, 2022.

[8] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and the burst: Remote identification
of encrypted video streams. In 26th USENIX Security Symposium (USENIX Security 17), pages
1357–1374, Vancouver, BC, August 2017. USENIX Association.

[9] Spotify. https://www.spotify.com/us/.

[10] Michael Lawrence Waskom. seaborn: statistical data visualization, April 2021.

[11] Wireshark. https://www.wireshark.org/.

12


	Introduction
	Related Works
	Permissions
	Assumptions
	Goals
	Security Policy
	Experimental Design
	Overview
	Tools
	Wireshark
	Spotipy
	Scapy
	Selenium
	PyTorch
	Seaborn

	TSAI
	Data Generation
	Data Pre-Processing
	Machine Learning Models

	Results
	Discussion
	Results
	Defense Mechanisms
	Future Work

	Conclusion
	Author Contributions
	Acknowledgements

