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Abstract: In our project, we will be connecting the ideas between using formal verifica-
tion with Coq to create fast and correct implementations. While this area is well studied, it
unfortunately is extremely niche and so resources are scattered. In this project, we hope to
bring all these ideas together and explain what formal verification is: from definitions, to
examples, and then practical use.
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1. Formal Verification

Formal verification is the process of mathematically proving the correctness of a program. Doing so requires (1)
modeling the program in some formal language, and (2) using a specified set of rules to prove the program’s
correctness.

In this section, we provide some historical background and motivation for formal verification, elucidate common
misconceptions between verification and validation as well as simulation techniques vs. formal verification, and
describe the major techniques for formal verification.

1.1. Motivation

The idea of formal methods of verification has existed since the 17th century, when Leibniz’s characteristica
universalis imagined a universal language governed by logical relations such that all statements could be verified
for truth value and thus all disputes could be resolved via logical calculation.

Over the years, mathematicians have used formal axiomatic systems to build mathematical proofs, by express-
ing statements in some formal language and creating the proof by following a set of given rules. But such proofs
were often far too large to compute by hand, and so interest in formalizing proofs was low. However, with the
advancement of computers, such complex proofs are now possible, and formalization techniques are gaining pop-
ularity. For example, in 1997, the use of computers allowed for a simpler proof of the four color theorem, and in
2005 another proof was provided using Coq.

Yet, formal verification techniques in software have yet to be widely adopted. Given that classic engineering
disciplines have well-established standards for designing and deploying products, developing such standards for
software engineers seems useful and relevant [12].

In fact, the lack of such standards has led to historically disastrous outcomes, such as the following cases:

• Therac-25: Radiation therapy machine malfunction causing at least six accidents from radiation overdose.

• Ariane 5: Explosion costing $800 million, caused by a variable overflow.

• Pentium bug: Bug in Intel processor resulting in recall of faulty processors and loss of $500 million.

Such incidents could have been avoided with the use of formal verification. Moreover, we focus here on the the
cryptography use case, where formal verification seems especially essential to ensure that program behavior does
not compromise a user’s security.

1.2. Verification vs. Validation

Verification and validation, although often used interchangeably, are distinct procedures used together to ensure
that a product adheres to its specifications and fulfills its purpose. The PMBOK standard [11], adopted by the
IEEE, defines them as follows:

• Verification: “The evaluation of whether or not a product, service, or system complies with a regulation,
requirement, specification, or imposed condition. It is often an internal process.”

• Validation: “The assurance that a product, service, or system meets the needs of the customer and other
identified stakeholders. It often involves acceptance and suitability with external customers.”

Here, we are concerned with verification. However, in practice, it is important to use both validation and verifi-
cation techniques in tandem. Some challenges of applying formal verification techniques include coming up with
a correct specification, and ensuring that the model adheres to how the program actually behaves. Representing a
program in some formal language is an abstraction process, and it can be difficult to ensure that we do not miss
details that appear in real-world use cases.

1.3. Simulation vs. Verification

Software engineers often use simulation to check the correctness of software. This is done by running tests on a
subset of the search space and checking that behavior conforms to what is expected. While this can work well
especially with comprehensive test suites, it does not provide a guarantee and can miss crucial parts of the search
space. Thus, formal verification has the advantage that it proves that the desired behavior holds everywhere in the
search space.



1.4. Formal Verification Techniques

The two main formal verification techniques are theorem proving and model checking.
Theorem proving, or deductive verification, involves utilizing (1) a formal language to express formulas, (2)

a set of axioms, or presupposed formulas, and (3) a set of rules used to derive new formulas from existing ones.
This is the technique used by Coq.

Model Checking involves representing the program as a mathematical model (e.g., a finite state machine), and
exhaustively exploring all states and transitions to verify that a desired property holds.

2. What is Coq?

Coq is a free and open-source proof assistant which allows for the development of programs as well as simultane-
ous verification. Coq isn’t an automatic theorem prover; rather, a user must guide Coq through a proof through a
sequence of tactics. These tactics include:

• simpl: simplifies an expression

• reflexivity: proves an equality statement by checking both sides are identical

• induction: proves a goal by induction

For convenience, Coq is also equipped with a library of common theorems and definitions. Coq is one of the most
popular proof assistants. It has been used to:

• certify software such as CompCert, a compiler for C

• verify the security of JavaCard

• facilitate specifications of programming languages and the x86 and LLVM instruction sets

• prove theorems that require computationally intensive proofs, like the 4 color theorem

2.1. Coq Syntax for Beginner

Like all programming languages, every variable in Coq has a type. Types are defined inductively. For example, we
can define the natural numbers as follows:

Inductive nat : Type :=
| O
| S (n : nat).

Here, O represents 0, and S takes a nat argument n and defines the successor of n. Thus, S O represents 1, S (S
O) represents 2, S (S (S O)) represents 3, and so on. Non-recursive functions can be defined as follows:

Definition pred (n : nat) : nat :=
match n with
| O => O
| S n’ => n’
end.

Here, the function pred computes the predecessor of n by matching it against O or S n’. Recursive functions
are defined using the Fixpoint syntax.

Fixpoint plus (n : nat) (m : nat) : nat :=
match n with
| O => m
| S n’ => S (plus n’ m)
end.

The name Fixpoint comes from the idea that recursive functions can be thought of as fixed points of an expres-
sion. For instance, the factorial function factorial can be thought of as the fixed point f to the expression:
lambda f (lambda n (n == 0 ? 1 : n * f(n-1))).



2.2. Basic Proofs in Coq

As Coq is not an automated theorem prover, the user must guide Coq with tactics to prove a theorem. We walk
though some examples given in [18]. First, consider the following proof

Theorem plus_O_n : forall n : nat, O + n = n.
(* The infix notation ’O + n’ is the same as ’plus O n’ *)
Proof.

intros n. reflexivity. Qed.

The tactic intros moves the forall quantifier on n into the context. The tactic reflexivity performs
some automatic simplifications (specifically simplifying O + n to n by directly applying the definition of the
plus function) and verifies that both sides of the equality are identical. Qed ends the proof.

Below, we describe a few more tactics.

• Proof by rewriting: rewriting is a tactic that’s useful in tackling proofs that involve statements of implica-
tion. For example:

Theorem plus_id_example : forall n m:nat,
n = m ->
n + n = m + m.

Proof.
(* move both quantifiers into the context: *)
intros n m.
(* move the hypothesis into the context: *)
intros H.
(* rewrite the goal using the hypothesis: *)
rewrite -> H.
reflexivity. Qed.

Here, we note that for this proof, we only focus on situations where n and m are equal. As before, intros
n m moves n and m into the context. intros H moves the hypothesis n = m into the context and names
it H. rewrite -> H rewrites the left hand side of n + n = m + m using the hypothesis H, effec-
tively replacing n with m, reducing the statement to m + m = m + m, which can be easily proven with
reflexivity, as in the next line.

• Proof by cases: consider the following theorem:

Theorem plus_1_neq_0: forall n : nat,
(n + 1) =? 0 = false.

Trying to prove this theorem with just simplification and reflexivity will fail, because addition was defined
to match the left argument with either O or S n’. In this case, however, the left argument is n, which is
arbitrary, and so cannot be matched with O or S n’ to simplify. The natural way to approach this proof
is therefore to consider two cases: one where n = O and one where n = S n’. Then, we prove that the
statement (n + 1) =? 0 = false holds in both cases. The following proof does this.

Proof.
intros n. destruct n as [| n’] eqn:E.
- reflexivity.
- reflexivity. Qed.

The destruct tactic breaks the goal into two subgoals specified by [| n’]. The first subgoal corre-
sponds to n = O; the second is where n = S n’. In both cases, after applying the relevant case assump-
tion, we can simply prove the goal by simplifcation and reflexivity.

Above, we showed O is the additive inverse on the left. Proving it is also an additive inverse on the right is a
little more complicated:



Theorem add_0_r : forall n : nat, plus n O = n.

The + operation tries to match variables from left to right and n is unknown. For this, we can resort to induction:

Proof.
intros n. induction n as [| n’ IHn’].
- (* n = 0 *) reflexivity.
- (* n = S n’ * ) simpl. rewrite -> IHn’. reflexivity. Qed.

Similar to the previous example, intros n. moves the forall quantifier on n into the context. Then we
use an induction tactic, specifying two subgoals (separated by the vertical bar). The first subgoal is simply
replacing n with O, and thus does not require further specification (hence the left side of the vertical bar is left
blank). We solve this subgoal by using reflexivity, as shown in the subsequent line (note the (* n = 0

*) on this line is merely a comment, specifying which subgoal that line is trying to resolve). The second subgoal
is the inductive step. This subgoal is specified by n’ IHn’, as we are replacing n with n’ (it is implicit that
this is the inductive step, and we have the relationship n = S n’) and IHn’, which is a just a label for this
inductive hypothesis. Then, we can resolve the subgoal by (after using simpl. for some simplification) using the
rewrite tactic to rewrite n as described above, then applying the inductive hypothesis, i.e. the theorem for n’.
Then a final call to reflexivity finishes off the proof.

3. Elliptic Curve Cryptography Background

Next we give some background on the mathematics in which elliptic curve cryptography is rooted. For the sake of
simplicity, we ignore some mathematical rigor so that the intuition is clear.

Definition 3.1. A planar algebraic curve C is the set of points (x,y) satisfying some polynomial equation
f (x,y) = 0. The degree of C is the degree of the polynomial f .

For the sake of simplicity of this survey and for the sake of discussing elliptic curves in the context of cryptog-
raphy, we define elliptic curves in the following way.

Definition 3.2. An elliptic curve is a plane curve over a finite field which consists of the points defined by the
equation

y2 = x3 +ax+b,

along with a point at infinity. This type of equaton is called a Weierstrass equation. Additionally, we require that
this plane curve is non-singular, which is equivalent to the statement that the discriminant of the curve

∆ =−16(4a3 +27b2)

is nonzero.

Remark 3.3. Note that the points for an elliptic curve are chosen from a fixed finite field whose characteristic is not
equal to 2 or 3, since in those cases the curve equation will not be so simple to write down. Fields of characteristic
2 or 3 are just those that have order 2n or 3n.

Remark 3.4. The set of points which define an elliptic curve also form an abelian group under the group operation
of elliptic curves, with the point at infinity acting as the identity element.

Recall that elliptic curve cryptography relies on the difficulty of reversing point addition on elliptic curves.

Definition 3.5. Point operations on elliptic curves:

1. The point at infinity O behaves as the identity element; in other words, adding it to any other point results
in that other point.

(a) O +O = O

(b) O +P = P

2. Assume we want to add the two distinct points P, denoted as (xp,yp), and Q, denoted as (xq,yq). Then
assuming our elliptic curve E is defined as y2 = x3 +ax+b, the sum P+Q = R is defined as:

λ =
yq− yp

xq− xp

xr = λ
2− xp− xq

yr = λ (xp− xr)− yp.



Conveniently, there is also a geometric representation of point addition on elliptic curves. To add two points
P and Q, first find the line that goes through those points. Then after determining where that line intersects
the elliptic curve at a third point, reflect that third point across the x-axis. The result of these operations is
the point R, which is the result of adding the points P and Q together.

Additionally note that in order to add a point P to itself, we opt for the line tangent to the curve at the point
P.

Definition 3.6. To use elliptic curve cryptography (ECC), all parties must first agree on the all the elements that
define the elliptic curve, also known as the domain parameters. These are denoted as (p,a,b,G,n,h).

1. The size of the finite field the elliptic curve is defined over is denoted by the variable p. The size is usually
prime.

2. The elliptic curve is defined using the constants a and b.

3. We define a cyclic subgroup of the elliptic curve group and the generator of this group is denoted as G. Note
that this point is also called the base point.

4. The order of the subgroup is n. In other words, the smallest positive number n such that nG = O , where O
is the point at infinity.

5. We have that h = |E(Fp)|/n and is called the cofactor.

First we discuss Elliptic-curve Diffie-Hellman (ECDH). We start with an example of ECDH in practice.

Example. Suppose that Alice wants to establish a shared key with Bob. Then each party first generates a key pair
suitable for elliptic curve cryptography. This is done by selecting a random integer d in the interval [1,n−1] which
will be the private key and a public key Q, which is the result of adding G, the base point, to itself d times. Denote
Alice’s key pair as (dA,QA) and denote Bob’s key pair as (dB,QB). Then Alice computes (xk,yk) = dA ·QB and
Bob computes (xk,yk) = dB ·QA. Each computation leads to the same value, the shared secret. Note that no party
can determine the private key unless they can solve the elliptic curve discrete logarithm problem. Similarly, no
external party can compute Alice and Bob’s shared secret unless they can solve the elliptic curve Diffie-Hellman
problem.

4. Coq for Elliptic Curve Cryptography

Now that we have talked about some of the basics of Coq and also elliptic curve cryptography, we combine these
topics. Applying formal verification, specifically using Coq, is quite natural for cryptography. This is because
of how ubiquitous cryptography is now. Essentially, every internet-connected application is faced with two de-
cisions: either to accept surveillance/modification of their network communications or to set up cryptographic
countermeasures. As expected, many choose the latter.

However, they are then faced with the question: can they trust the cryptographic code? Many cryptographic
algorithms have mathematically been shown to be robust. However, the same cannot be said for the implemen-
tations of these cryptographic algorithms. As reported by [15], we can check the website ianix to see that over
250 libraries claim that they provide ed25519 digital signature functionality. However, the issue is that none of
these libraries have received an external audit. So how do we know which one to trust? Unfortunately, there have
also been examples where highly optimized implementations written by widely respected implementers have had
bugs, so we cannot just trust those implementations. It is clear that optimized implementations are necessary for
fast speeds needed for web applications, for example. Therefore, we would like to eliminate the tradeoff between
performance and correctness of cryptographic implementations.

And of course, the key here is to use computer-checkable proofs such as Coq. With the proofs that Coq provides,
the goal would be to not have to perform manual audits of the implementation. In other words, if the proof
checks out, we consider the code to be trusted. A lot of this process has been pioneered by the MIT Programming
Languages and Verification Group which is led by Professor Adam Chlipala. In fact, they have developed Fiat
Crypto, the largest Coq library in the world. The way this library works is that it contains numerous Coq proofs
necessary for elliptic curve cryptography. The library also contains computer-checkable programs that build C
code from the Coq proofs. Then others can use this C code as building blocks for whatever algorithms they are
trying to implement.

Now we discuss a Coq implementation from Fiat Crypto. In order to do so, we briefly discuss projective coordi-
nates. Recall our definition of a Weierstrass curve, which we defined using affine coordinates. Looking back at our
definition of point addition and point doubling, we see that each requires one division step. Therefore, repeatedly
adding a point to itself, as required in elliptic curve cryptography, will require hundreds of division operators.

https://ianix.com/pub/ed25519-deployment.html
https://github.com/mit-plv/fiat-crypto
https://github.com/mit-plv/fiat-crypto


However, scalar division is usually an expensive operation and therefore we would like to limit the number of
division operations we perform.

Thus the key idea is to use projective coordinates. In essence, using projective coordinates allows us to defer
when we actually perform the division operation to the end. This is done by repeatedly multiplying the denomina-
tor at each iteration. Then at the end, we convert projective coordinates back to affine coordinates to perform the
single division operation.

So the question now is, how do we convert from affine coordinates to projective coordinates (and the other way
as well)? Recall that in affine form, an elliptic curve point has two coordinates, (x,y). However in projective space
each point now has three coordinates, (X ,Y,Z), with the restriction that the third coordinate is never 0. Then we
have the following mapping from affine coordinates to projective coordinates:

(x,y)→ (xz,yz,z),

where z is typically 1 and always nonzero. Similarly we have the following backwards mapping:

(X ,Y,Z)→
(

X
Z
,
Y
Z

)
Now it is clear why we require Z to be nonzero.

Now having these definitions, we can see how this is reflected in the Fiat Crypto library (under
fiat-crypto/src/Curves/Weierstrass/Projective.v):

Definition point : Type := { P : F*F*F | let ’(X,Y,Z) := P in Yˆ2*Z = Xˆ3 +
a*X*Zˆ2 + b*Zˆ3 /\ (Z = 0 -> Y <> 0) }.

Program Definition to_affine (P:point) : Wpoint :=
match proj1_sig P return F*F+_ with
| (X, Y, Z) =>

if dec (Z = 0) then inr tt
else inl (X/Z, Y/Z)

end.
Next Obligation. Proof. t. fsatz. Qed.

Program Definition of_affine (P:Wpoint) : point :=
match W.coordinates P return F*F*F with
| inl (x, y) => (x, y, 1)
| inr _ => (0, 1, 0)
end.

Next Obligation. Proof. t; fsatz. Qed.

As we can see in the code, first we define a projective point on an elliptic curve. Then we have a definition that
tells us how to get from a projective coordinate to an affine coordinate, just as we defined in math above. Although
a bit harder to see, the second definition tells us how to get from an affine coordinate to a projective coordinate.
From here, we can write proofs, such as ones to add points:

Lemma to_affine_add P Q except :
W.eq

(to_affine (add P Q except))
(WeierstrassCurve.W.add (to_affine P) (to_affine Q)).

Proof using Type.
destruct P as [p ?]; destruct p as [p Z1]; destruct p as [X1 Y1].
destruct Q as [q ?]; destruct q as [q Z2]; destruct q as [X2 Y2].
pose proof (not_exceptional_y_of_not_exceptional _ _ except).
cbv [not_exceptional_y opp to_affine add] in *; t;
clear except not_exceptional_y;
specialize_by_assumption.

all: try abstract fsatz.

(* zero + P = P -- cases for x and y *)
{ assert (X1 = 0) by (setoid_subst_rel Feq; Nsatz.nsatz_power 3%nat);



t; fsatz. }
{ assert (X1 = 0) by (setoid_subst_rel Feq; Nsatz.nsatz_power 3%nat);
t; fsatz. }

(* P + zero = P -- cases for x and y *)
{ assert (X2 = 0) by (setoid_subst_rel Feq; Nsatz.nsatz_power 3%nat);
t; fsatz. }
{ assert (X2 = 0) by (setoid_subst_rel Feq; Nsatz.nsatz_power 3%nat);
t; fsatz. }

Qed.

This is only a small, extremely easy snippet of the expansive Fiat Crypto library. The library now contains
proofs for most cryptographic primitives, has implementations of all finite field arithmetic, and has most elliptic
curve types already implemented thanks to the MIT Programming Languages and Verification Group.

5. A Need for Point Compression

Here we discuss a potential new proof to include in the Fiat Crypto library. In particular, we introduce the idea of
point compression, discuss the ideas behind it, including possible use cases, and detail why it is important.

The idea behind point compression is quite simple: we want to speed up ECC by storing less bits of points
needed. Before we delve into discussing different point compression methods, first we discuss a bit of theory that
has been used to speed up ECC.

5.1. Edwards Curves

Often Edwards curves are used in ECC since addition, doubling, and tripling can be done faster on Edwards curves
than on curves given by a Weierstrass equation. This is because the addition law on Edwards curves does not have
exceptions whereas addition on a Weierstrass curve has to be split into cases (for example, addition involving the
identity).

Definition 5.1 (Edwards curve). Let a be a non-square element of a field k whose characteristic is not 2. Then the
equation

x2 + y2 = 1+ax2y2

defines an elliptic curve with distinguished point (0,1).

In specific, note that every Edwards curve can be written as a Weierstrass curve by writing down a bijection.
But as that proof is beyond the scope of this paper, it is omitted here.

Definition 5.2. Let Ed be an Edwards curve given by

Ed : x2 + y2 = 1+dx2y2.

Let P0 = (x0,y0) ∈ Ed , then −P0 = (−x0,y0). Now let P1 +P2 = P3 with Pi = (xi,yi) ∈ Ed for i = 1,2,3. Then
Edwards curve point addition is given by

(x1,y1)+(x2,y2) =

(
x1y2 + x2y1

1+dx1x2y1y2
,

y1y2− x1x2

1−dx1x2y1y2

)
= (x3,y3).

Remark 5.3. Here note that−(x1,y1) = (−x1,y1) and (0,1) is the identity element, which is different from Weier-
strass curves. Additionally, note that the formula for point addition for Edwards curves is complete in that there
are no exceptions to the formula. We just need that dx1x2y1y2 6= ±1, which is satisfied when d is not a square in
the field k (given in the definition).

Since the addition formula for Edwards curves is complete, it can be implemented very efficiently as a program
with no branching. Additionally, complete formulas protect against side channel attacks. For example, if we were
using separate formulas for addition versus doubling, an adversary may be able to externally distinguish these
cases by observing the CPU. Therefore, using complete formulas allows us to subvert side channel attacks since
exactly the same sequence of instruction is executed each time.

Remark 5.4. It should be noted here that unlike Weierstrass equations, not every elliptic curve can be written in
Edwards form. In particular, every Edwards curve has a rational point of order 4, but not every elliptic curve has
such a point.

Moreover, we introduce the twists of elliptic curves.



Definition 5.5. A twisted Edwards curve Ea,d over a field k with characteristic not equal to 2 is a plane curve
defined by the equation

Ea,d = ax2 + y2 = 1+dx2y2,

where a,d ∈ k are non zero and distinct. Note the special case a = 1 when the curve is untwisted since it reduces
to a normal Edwards curve.

The operations on twisted Edwards curves are far more efficient than on most other forms of elliptic curves.
This is what makes twisted Edwards curves so suitable for cryptographic applications. For example, the widely
used curve Curve25519 is a twisted Edwards curve.

5.2. Naive Point Compression

Point compression is a technique that is deployed for a variety of reasons: to save bandwidth/memory, to protect
against some attack, for example by eliminating cofactors, or a myriad of other reasons. We will discuss some of
these benefits in future sections, but for now we first discuss some naive point compression algorithms. In fact, we
start with the most basic example of point compresion being used.

5.2.1. General Purpose Elliptic Curve Point Compression

Recalling the Weierstrass form for an elliptic curve, we see that given a point P = (x,y), we can solve for the
y-coordinate in terms of the x-coordinate:

y =±
√

x3 +ax+b.

However, there is a slight issue: for any x of a given point P, there are two possible y coordinates (heuristically
we can see that this makes sense since elliptic curves have symmetry over the x-axis). Therefore, the purpose of
point compression is to then encode the two possibilities for y in some sort of compressed representation so that
only the x coordinate needs to be transmitted. One possible way to implement this is to transmit an extra bit with
the x coordinate that contains the parity of the y coordinate. This would then allow us to pinpoint exactly which y
coordinate we want.

5.3. Benefits of Point Compression

As alluded to in the previous section, point compression can also protect against certain attacks such as the small
subgroup attack. First we discuss the attack and then detail how point compression could be used to subvert this
attack using the work done in [16].

5.3.1. Small Subgroup Attack

Next we discuss an attack on ECC security to show why having a cofactor could be a pitfall.
Recall that the Diffie-Hellman (DH) key exchange is based on the perceived hardness of the discrete logarithm

problem and specifically, it relies on the difficulty of computing discrete logarithms in a chosen group. The proof
that DH is secure relies on the fact that the group we are working over is of prime order. However, the difference
here is that most real world implementations, for example ECDH, do not use groups of prime order. In particular,
while some elliptic curves do have prime order, one of the most popular choices, Curve25519, does not have
prime order. In other words, while mathematical analyses of certain protocols such as DH rely on the fact that
we operate over prime order groups, in reality the implementations do not, which potentially opens them up
to attacks. In particular, these attacks exploit the additional structure that is present in non-prime order groups.
One such example of an attack is the small subgroup attacks. The small subgroup attack on ECDH works in the
following way:

1. The attacker, Eve, sends Bob a point Q of small order, pretending that it is her public key (this is in replace-
ment of sending a legitimate curve point eP).

2. Then Bob computes bQ, where b is Bob’s private key. However, since Q has small order, there are not many
possibilities for the value of bQ.

3. Thus this attack will reveal n, modulo the order of Q. Note that Bob hashing bQ, for example using AES-
GCM, does not change anything.

Let us discuss Eve’s strategy in more detail. Note that curves typically have order h`, where ` is the order of the
base point P and h is the cofactor. The prime ` is usually pretty large and h is very small. Then when Eve sends
Bob a point Q, there are only a limited number of possibilities for the order of Q: either the order of Q is a divisor



of h or is a divisior of h times `. Then assuming that the curve is cyclic (which it is in most cases), Eve’s best
strategy is to choose Q such that its order is h since the attack will then reveal n mod h. Then Eve can find the
value of n by a short exhaustive search. In other words, Eve is able to determine Bob’s private key since she was
able to force all cryptographic operations to occur within a small subgroup where an exhaustive search is feasible.

Note that one can protect against this type of attack by choosing curves where the cofactor is 1. Additionally,
as detailed in [16], there have been ways to defend against this attack, although they are quite “bulky.” The usual
defense has been to multiply certain points by the cofactor h and end the protocol if the result at any point is the
identity. However, this process has its own difficulties in that it is not clear which points to even scale by h.

5.3.2. Eliminating Cofactors Through Point Compression

Note that pitfalls associated with having a cofactor, such a small subgroup attacks, could be avoided by considering
an order q subgroup of the elliptic curve. However, there exists many issues with this, such as the fact that checking
for membership in the subgroup could be slow and/or complex. This is because we would need to implement an
extra scalar multiplication or have to employ more complicated tactics, such as checking the roots of division
polynomials or inverting isogenies. However, in [16], Hamburg suggests an alternative way to build a group of
prime order q starting with an Edwards or twisted Edwards curve of order 4q. Therefore, we are clearly eliminating
the cofactor.

In Hamburg’s paper, he details two ways of elininating the cofactor of 4. The first method only works for twisted
Edwards curves while the second method allows for curve flexibility. Here we only focus on the first method. First
we understand the algorithm and then start the process of implementing it in Coq. We start with some standard
definitions from group theory:

Definition 5.6 (From [4]). Let H be a subgroup of a group G. Then if xHx−1 = H for every element x ∈ G, then
H is said to be a normal subgroup of G.

Definition 5.7. For a subgroup H of a group G and an element x of G, define xH to be the set {xh : h ∈ H} and
Hx to be the set {hx : h ∈ H}. A subset of G of the form xH for some x ∈ G is said to be a left coset of H and a
subset of the form Hx is said to be a right coset of H.

Definition 5.8 (From [6]). For a group G and a normal subgroup N of G, the quotient group of N in G, written
G/N, is the set of cosets of N in G.

Definition 5.9 (From [16]). An element g of a group G is a k-torsion element if k · g = 0G, where 0G denotes
the identity element of the group G. Additionally, we note that the k-torsion elements of an abelian group form a
subgroup denoted as G[k]. The k-torsion subgroup of an elliptic curve over a finite field has order dividing k2. For
example, the 2-torsion subgroup has size 1, 2, or 4.

Having these definitions, we can now describe the first proposal put forth in [16]. Calling our twisted Edwards
curve as E, we consider the group E/E[4]. In other words, two points on E are considered equal if their difference
has small order which divides 4. However with considering this group there comes three changes that need to be
implemented:

1. We now need a new function that will check the equality of group elements.

2. We need an encoding function which will encode equal points to equal sequences of bits.

3. We need a decoding function that only accepts inputs that are the outputs of the encoding function.

In other words, we can use any points on E, but points which differ by a point of order 4 are considered equal and
therefore will be encoded to binary in the same way. Note that this is analogous to the way projective coordinates
work: although two values in memory might be considered the same point and encode to the same binary string,
the actual X ,Y,Z coordinates might be different. This is also the way this method protects against small subgroup
attacks: while points of small order might appear internally, they will be considered equivalent to the identity
element.

In the paper [16], algorithms are given for the difficult part of this procedure, encoding and decoding. The
encoding algorithms are referred to as compression since the output is actually a singular field element of the
underlying field rather than the two elements we expect. With these algorithms, the goal is that protocols will
now we able gain the simplicity, security, and speed benefits of twisted Edwards curves without falling trap to the
difficulties that a cofactor brings. Therefore, we tried to implement these algorithms in Coq, as a bonus extension
to this report. (The encoding and decoding algorithms are explicitly given in section A of the appendix in [16].)
However due to many factors, this proved to be difficult so we have some partial progress.



In order to start the implementation process of these encoding and decoding algorithms, we first started by look-
ing at how only Edvard Curves algorithms were already implemented in Fiat Crypto. For example, we specifically
looked at the file fiat-crypto/src/Curves/Edwards/Pre.v, where Edwards curves are defined and also point addition
on Edwards curves is defined:

Local Notation onCurve x y := (a*xˆ2 + yˆ2 = 1 + d*xˆ2*yˆ2) (only parsing).
Lemma onCurve_zero : onCurve 0 1.
Proof using a_nonzero eq_dec field.
fsatz. Qed.

Section Addition.
Context (x1 y1:F) (P1onCurve: onCurve x1 y1).
Context (x2 y2:F) (P2onCurve: onCurve x2 y2).
Lemma denominator_nonzero : (d*x1*x2*y1*y2)ˆ2 <> 1.
Proof using Type*.

destruct a_square as [sqrt_a], (dec(sqrt_a*x2+y2 = 0)),
(dec(sqrt_a*x2-y2 = 0));
try match goal with [H: ?f (sqrt_a * x2) y2 <> 0 |- _ ]

=> pose proof (d_nonsquare ((f (sqrt_a * x1) (d * x1 * x2

* y1 * y2 * y1))
/(f (sqrt_a * x2) y2 * x1 * y1 )))

end; Field.fsatz.
Qed.

Lemma denominator_nonzero_x : 1 + d*x1*x2*y1*y2 <> 0.
Proof using Type*. pose proof denominator_nonzero. Field.fsatz. Qed.
Lemma denominator_nonzero_y : 1 - d*x1*x2*y1*y2 <> 0.
Proof using Type*. pose proof denominator_nonzero. Field.fsatz. Qed.
Lemma onCurve_add : onCurve ((x1*y2 + y1*x2)/(1 + d*x1*x2*y1*y2))

((y1*y2- a*x1*x2)/(1 - d*x1*x2*y1*y2)).
Proof using Type*. pose proof denominator_nonzero. Field.fsatz. Qed.

End Addition.

We can see by looking at this code snippet that Edwards curves are defined and point addition is also defined,
with proof. Looking carefully, we see that a lot of the lemmas are resolved with ‘fsatz.’ Fsatz is a tactic defined
within Fiat Crypto and solves simple arithmetic operations (see fiat-crypto/src/Algebra/Field.v for
a definition). Looking at this example, we were then able to define twisted Edwards curves and set up the correct
imports by looking at this file.

However we soon hit our first big difficulty. Looking at the encoding algorithm given in [16], we see that an
inverse square root is necessary. However, only a very naive implementation of square roots over fields exists in
Fiat Crypto and definitely no implementation of inverse square roots exists within Fiat Crypto. Therefore, this is
the part where we got stuck, so we have been working with Andres Erbsen of the Programming Languages and
Verification Group to try to get this implementation. Unfortunately, both the encoding and decoding algorithms
rely on this inverse square root, so we are still working on that. In particular, we are strengthening our Coq
knowledge so that we are able to tackle these algorithms in the near future.
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Logical foundations. Software Foundations series, 1, 2018.
19. A. Sutherland. 18.783 lecture #11: Primality proving, 2022. [Online; accessed 25-April-2022].
20. A. Sutherland. 18.783 lecture #2: Elliptic curves as abelian groups, 2022. [Online; accessed 25-April-2022].
21. A. Sutherland. 18.783 lecture #7: Point counting, 2022. [Online; accessed 25-April-2022].
22. A. Sutherland. 18.783 lecture #8: Schoof’s algorithm, 2022. [Online; accessed 25-April-2022].
23. A. Sutherland. 18.783 lecture #9: The discrete logarithm problem, 2022. [Online; accessed 25-April-2022].
24. Wikipedia contributors. Elliptic curve — Wikipedia, the free encyclopedia, 2022. [Online; accessed 28-April-2022].
25. Wikipedia contributors. Elliptic-curve cryptography — Wikipedia, the free encyclopedia, 2022. [Online; accessed

28-April-2022].
26. Wikipedia contributors. Elliptic-curve diffie–hellman — Wikipedia, the free encyclopedia, 2022. [Online; accessed

28-April-2022].
27. Wikipedia contributors. Elliptic curve point multiplication — Wikipedia, the free encyclopedia, 2022. [Online; accessed

28-April-2022].

https://mathworld.wolfram.com/NormalSubgroup.html
https://crypto.stackexchange.com/questions/81851/pohlig-hellman-and-small-subgroup-attacks
https://crypto.stackexchange.com/questions/81851/pohlig-hellman-and-small-subgroup-attacks
https://mathworld.wolfram.com/QuotientGroup.html
http://safecurves.cr.yp.to/twist.html
http://safecurves.cr.yp.to/twist.html
https://crypto.stackexchange.com/questions/56344/what-is-an-elliptic-curve-cofactor
https://crypto.stackexchange.com/questions/56344/what-is-an-elliptic-curve-cofactor
https://hackernoon.com/what-is-the-math-behind-elliptic-curve-cryptography-f61b25253da3
https://hackernoon.com/what-is-the-math-behind-elliptic-curve-cryptography-f61b25253da3
https://crypto.stackexchange.com/questions/51350/what-is-the-relationship-between-p-prime-n-order-and-h-cofactor-of-an-ell/51352#51352
https://crypto.stackexchange.com/questions/51350/what-is-the-relationship-between-p-prime-n-order-and-h-cofactor-of-an-ell/51352#51352
https://crypto.stackexchange.com/questions/51350/what-is-the-relationship-between-p-prime-n-order-and-h-cofactor-of-an-ell/51352#51352

