
Analysis and Implementation of the Encrypted
Negative Password Authentication Scheme

Terryn Brunelle, Winston Fee, and Peter Rowley

May 10, 2022

Abstract

In this paper we describe and implement the Encrypted Negative Password
(ENP) password storage scheme outlined in a paper of Luo et. al., which proposes
to securely hash passwords without the need of any externally stored random-
ness. We assess the security, practicality, performance, and scalability of ENP
in comparison to other schemes, and discuss the practical results we obtain in
a proof-of-concept implementation. We conclude that existing schemes already
appear to provide an adequate level of security, but that ENP could be useful
for application administrators worried about improper salting or other database
maintenance issues.

Contents

1 Introduction 2

2 Background 2
2.1 Hashed Passwords . 3
2.2 Salted Passwords . 3
2.3 Key Stretching . 3
2.4 Peppered Passwords . 3
2.5 Encrypted Negative Password (ENP) 4

3 ENP 4
3.1 Negative Databases . 4
3.2 Registration Algorithm . 5
3.3 Verification Algorithm . 6

4 Analysis 6
4.1 Theoretical Security . 6

4.1.1 Lookup Table Attacks . 6
4.1.2 Dictionary Attacks . 7

4.2 Practical Security . 8

1

4.3 Performance . 9
4.4 Scalability . 9
4.5 Takeaways . 9

5 Implementation 10
5.0.1 General Implementation . 10
5.0.2 ENPI . 10
5.0.3 ENPII . 12
5.0.4 Implementation Analysis and Testing 14

6 Conclusion 15

7 Acknowledgements 15

1 Introduction

Secure password storage and authentication schemes are the backbone of the Internet.
Any website which has user accounts should store its users’ data as securely as possible,
since any passwords which are broken can be used to log into users’ accounts on other
websites due to the commonality of password reuse. In addition, due to users choosing
insecure passwords, simply hashing the given password is often not enough to prevent
passwords from being discovered if an internal data table is stolen.

Due to the importance of this problem, there have been several schemes which have
been both proposed and used over the years. Some examples of such schemes beyond
just hashing the password are salting, peppering, and key stretching, which we cover
in Section 2. However, these schemes all have their drawbacks, such as vulnerability to
certain attacks in the case of salting and difficulty of use in the case of key stretching.

In this paper, we describe and implement the Encrypted Negative Password (ENP)
password storage and authentication scheme of [1]. We analyze the security, perfor-
mance, and scalability of the scheme in comparison to currently used methods such
as salting, key stretching, and peppering. We conclude that it provides a competitive
level of security without requiring outside randomness such as a salt or pepper. We
describe the scheme in Section 3, perform our analysis in Section 4, and we discuss our
implementation of it and our testing of the efficiency of our implementation in Section
5.

2 Background

In this section, we give some examples of common schemes employed today as well as
some of their strengths and weaknesses.

2

2.1 Hashed Passwords

One of the most basic forms of security for storing passwords is to simply hide them by
hashing them. The hashed value that is obtained from hashing the registered password
is directly stored in the database, and every time a user logs in, their password is hashed
to determine if it matches the stored value. While extremely simple, this scheme is
highly vulnerable against lookup table attacks, in which an attacker has precomputed
the hashes of several common passwords and searches for the corresponding hashes in
an exposed or insecure database.

2.2 Salted Passwords

Salting is a method used to give more security to basic hashing. Before a password
is hashed and stored in the database, salt is added by appending random bits to the
beginning or end of the password. The larger the salt that is added, the more security
is gained. While salting protects against precomputation attacks, it still has less than
ideal security against dictionary attacks. In a dictionary attack, the attacker will try
items in a ”dictionary” (list of possible passwords) in a brute force fashion until the
password is found. Salting helps against dictionary attacks, but more security is needed,
as noted in [1].

2.3 Key Stretching

Key stretching is a method in which stored hidden passwords are made much longer
and more random. An example would be applying different hashes multiple times
to expand and randomize the key. The number of times that we perform the hash
would be denoted as the cost factor for the key stretching algorithm, codifying how
computationally expensive it is to calculate an overall hash for each password. While
key stretching (when combined with salted passwords) is highly effective in defeating
lookup table attacks as well as dictionary attacks, it introduces more parameterization
for the implementer and it increases the computational load on the security system, as
noted in [1].

2.4 Peppered Passwords

In a peppered password scheme, after hashing the password we encrypt the hash using
a symmetric key, which we call the pepper, described in [3][2]. The pepper similar to a
salt, but is shared across all stored passwords rather than being unique per password
like a salt. The pepper is typically a long number (e.g., > 128 bits) such that brute-
force guessing it would take a long time. Importantly, the pepper is not stored in the
database, but is instead stored inside of a secret vault or hardware security module
(similarly to how we might store a secret key used for encryption), as described further
in [3].

3

2.5 Encrypted Negative Password (ENP)

Encrypted Negative Password is the password storage scheme that we are focusing on in
this paper. Like key stretching, it gives high security against lookup table attacks and
dictionary attacks. It also attempts to eliminate some of the implementation/usability
complexity of key stretching by removing the need for salting and parameterization, as
noted in [1].

3 ENP

The Encrypted Negative Password authentication scheme depends on three main con-
cepts: hashing, symmetric-key encryption, and negative databases. The specific cryp-
tographic hash function and encryption algorithm have to match in the sense that the
output to the hash function should be the same size as a valid key for the encryption
algorithm. This requirement comes from the fact that the hash of the password is used
as the key for encryption, so that it is not necessary to store additional data to be used
as a key.

The central concept of the ENP scheme is that of a negative database. As such, we
will begin by describing negative databases, and then we will describe the steps of the
ENP registration and verification algorithms.

3.1 Negative Databases

Let DB be any database consisting of some set of length-n bit strings. The central
idea of a negative database is to hold the same information by instead storing the
complement of the set of entries in DB. More precisely, if U is the set of all length-n
bit strings, a negative database will store U − DB, the set of all length-n bit strings
not in DB.

The immediate problem with this idea is that for a constant-size database DB, the
corresponding negative database as stated above will have exponentially many entries,
quickly making it infeasible to store. In order to make this concept feasible, a significant
amount of compression is needed. In particular, entries in the negative database NDB
are stored as length-n strings using the symbols 0, 1, and ∗, where a ∗ indicates that
either a 0 or a 1 can be put in its place. For example, 1 ∗ 0∗ represents all length-4 bit
strings with a 1 as the first bit and a 0 as the third bit, of which there are 4.

For the ENP algorithm, we will focus on the specific case that DB contains exactly
one entry. In this case, there are multiple efficient algorithms for finding a valid negative
database. We will use two algorithms in this paper, the prefix algorithm and a slightly
more complicated variant of it. The details of both algorithms will be described in
Section 5. See Table 1 for an example of a negative database given by the prefix
algorithm.

4

DB NDB
0000 ***1

*1*0
*010
1000

Table 1: Negative database using prefix algorithm

3.2 Registration Algorithm

As with any authentication scheme, ENP has two algorithms: the registration algo-
rithm and the verification algorithm. The registration algorithm takes as input a new
user’s desired username and password, storing the username and some data based on
the password (for example, its hash value, in the simplest case) in the internal authenti-
cation data table. The verification algorithm takes as input a username and password,
checks whether the username is in the table, and checks whether the password matches
the corresponding entry.

The registration algorithm of ENP has three main steps, as follows.

1. Hash the password

2. Convert to a negative password

3. Encrypt the negative password

Figure 1: Steps of the Registration algorithm

The first step is simple: the password is hashed using the chosen cryptographic hash
function, so that the output has a constant number of bits, say m.

In the second step, we construct a negative database for the one-entry database
consisting of the hashed password. We call this a negative password. This is the crucial
step, largely because the algorithms for generating a negative password from a hashed
password introduce randomness. However, importantly, any possible negative password
can be solved to yield the original hashed password by simply checking which bit string
is not in the database. In particular, we do not need to know the randomness that was
used for the reverse direction, which removes the need to store additional data in the
table.

However, a negative password on its own is not more secure than just a hashed
password, since as noted, any negative password can be solved to obtain the original
hashed password. Therefore, an encryption step is necessary. In this step, we calculate
Enc(H(pass), NP), where H(pass) is the hashed password used as the key, and NP is
the negative password calculated in the second step. Note that it is important that the
chosen encryption algorithm takes m-bit keys, since that is the length of H(pass). The
resulting output is the encrypted negative password, which gives the scheme its name,
and is stored in the authentication data table.

5

3.3 Verification Algorithm

Given a username and password, the process of verifying the password consists of the
following four steps.

1. Retrieve the ENP corresponding to the given username

2. Hash the password

3. Decrypt the ENP to get a negative password

4. Check that the hashed password is the solution to the negative password

Figure 2: Steps of the Verification algorithm

Steps 1 and 2 are independent of each other and can be done in either order. In
step 1, the username is found in the authentication data table, and the corresponding
ENP is retrieved. If there is no entry corresponding to the given username, then the
process ends with an error message of the form ”username not found.” In step 2, the
given password is hashed using the chosen cryptographic hash function.

In step 3, we calculate Dec(H(pass), ENP). If the password is correct, then
H(pass) is the key used to encrypt the negative password, so this will output the
negative password NP generated in the registration algorithm.

In step 4, we check that H(pass) is the unique entry not contained in NP . The
details of how this is done are dependent on the specifics of how the negative password
is generated, which will be covered in Section 5. If it matches, we return that the
password is correct; if it doesn’t, we return that the password is incorrect.

4 Analysis

In this section we provide an analysis of the ENP scheme compared to several other
common password storage schemes introduced in section 2. We consider both theoret-
ical and practical security, performance, and scalability.

4.1 Theoretical Security

The authors of [1] evaluate the theoretical security of the scheme under lookup and
dictionary attacks, and compares the security to what is achieved by hashed password,
salted password, and key stretching schemes. Here, we provide a brief summary of the
conclusions reached in the paper and add in a comparison to the peppered password
scheme, as well as some of our own takeaways.

4.1.1 Lookup Table Attacks

In a lookup table attack, an adversary has access to the password authentication
database and attempts to precompute a table mapping plaintext passwords to their

6

corresponding hash values. The adversary performs a search and compare between
their precomputed table and the authentication database to see if they can determine
any username, password pairs.

To perform a lookup table attack on an ENP scheme using m-bit password hashes,
an adversary would need to compute all possible ENPs for every password it wishes to
check for a given username (usually a list of most common passwords). For ENPI, the
size of the lookup table would be be O(Nd ·m!), where the m! term comes from the fact
that ENPI uses a random permutation to generate negative passwords, and Nd is the
number of passwords the adversary wishes to precompute. This size increases quickly
with the size m of the password hash, and is usually too big to be precomputed given
the limits of modern storage resources. ENPII provides even more security, since the
additional randomness is added to the negative password generation process.

A hashed password scheme is more easily attacked, given that we only need to store
one hash for each password we wish to check. The salted password and key stretching
analyses instead replace the m! term with 2l, where l is the size of the salt. The 2l term
comes from the adversary not knowing which salt goes with the passwords they wish
to check, and thus needing to pre-compute hashes for every possible salt. This space
bound is sufficient to be too large and expensive time-wise for large enough l. The paper
notes, however, that since m! grows faster than 2l, ENPI and ENPII provide strictly
more security against lookup table attacks than salted password and key stretching
schemes.

For all of these schemes, an attacker could feasibly download lookup tables from
external sources rather than generating one themselves. Peppering instead ensures
that the lookup table needed to attack the authentication database is unique to that
database, because the attacker will need to compute all possible peppers for every
password that they wish to precompute. The space complexity would then be O(Nd·2p),
where p is the bit-length of the pepper, as in [3]. Thus, the space complexity still grows
slower than that of ENP. Even if we were to use both salting and peppering, the space
complexity would be O(Nd · 2l+p), which still grows slower than m!.

In sum, we agree with the paper’s findings that ENP provides more security against
lookup table attacks than existing schemes. We note, however, that since an exponential
space growth factor is sufficient to render precomputing a lookup table on modern
machines, the factorial growth does not seem to add much practical security, at least
in a modern context.

4.1.2 Dictionary Attacks

In a dictionary attack, an adversary tries to brute-force guess passwords corresponding
to hashes in the authentication database. These attacks are impossible to prevent alto-
gether, but can be made so time consuming that they become impractical to undertake.

To perform a dictionary attack against the ENP scheme, an attacker would hack
into the authentication database and, for each ENP in the database and for each of the
Np passwords that the attacker wishes to check:

• Obtain a hash of the plaintext password (in time Th)

7

• Decrypt the ENP to a negative password, using the password hash as a key (in
time Td)

• Check if the password hash is the solution of the decyprted negative password (in
time Ts)

The time complexity of this process depends entirely on how long each of these steps
take. Since the adversary repeats these steps for each of the Np passwords in their
password list to test against and for each of the Nd ENPs in the authentication table,
the total time complexity of conducting a dictionary attack is O(Nd ·Np · (Th+Td+Ts))
[1].

Similarly, the time complexities to attack salted password and key stretching schemes
depends on how long it takes to compute hashes and check for hash equality. Since we
can control how long hashing takes in key stretching through the cost factor, dictionary
attacks could in theory be made to take longer on key stretching schemes than on ENP
schemes [1]. We note, however, that we can also add a cost factor and multiple rounds
of encryption to ENP, meaning that the scheme can match the theoretical security of
key stretching against dictionary attacks.

Peppered password schemes instead seem to introduce a significant advantage, ren-
dering dictionary attacks practically impossible if the pepper is unknown. Without
knowing the pepper, the attacker doesn’t know what inputs to use to the hash function
for the passwords in our testing list (unlike when the attacker has access to a salt).
The attacker would need to brute-force the pepper when testing against each plaintext,
hashed password pair, increasing the time complexity of the attack by a factor of 2p

(where p is the bit-length of the pepper) [3].
Thus, even though ENP is certainly competitive against schemes such as key stretch-

ing, there are other more widely studied schemes that already give superior theoretical
security against dictionary attacks. In particular, a scheme combining both peppering
and key stretching could serve as a powerful defense against lookup table and dictionary
attacks. We also note that the security achieved by ENP over key stretching against
dictionary attacks does not seem to be much, as both remain dependant on increasing
load on computational resources via multi-iteration encryption.

4.2 Practical Security

Next, we assess what the security of ENP might look like in practice. Since there is
no need for salt, there is no possibility for administrative error such as salt re-use or
making salts too short. There is also no risk of publicly exposing a global secret that
could compromise the entire system, as is a risk in peppered password schemes, noted
in [3].

As discussed in section 4.1.2, peppered password schemes have the important benefit
of forcing the attacker to brute-force the entire database for every possible pepper even
after a database breach. If the attacker knows access to the salt and plaintext password
of some user (including themselves), however, it is possible that they could brute-force
the pepper. Once the pepper is obtained, the attacker would have significantly reduced
the overall security of the system. It is important for this scenario that the passwords

8

are salted, as otherwise the security is reduced to that of a hashed password scheme,
which is not much. Still, after a breach, it is non-trivial to change the pepper. Given
the difficulty of key rotation and breach recovery, it is important to store a separate
pepper for each application managed by an entity, as stated in [3].

In an ENP scheme, the attacker does not learn anything about the rest of the pass-
words in the database by obtaining a single username-password pair. This is due to the
fact that negative passwords are generated from an (independent) random permutation
for each password. Even if there is a database breach, one could simply recompute the
negative passwords with fresh randomness for each compromised password. This seems
to make the scheme much more practical to maintain than peppering.

The paper also highlights the benefits of not needing to store a salt for each pass-
word. The absence of a salt, however, does not seem to matter much for practical
security, as the main benefit of storing a unique salt for each password is that compro-
mising a username-password pair does not leak any information about other passwords
in the system. This feature is already achieved by ENP, as noted above.

4.3 Performance

Like key stretching, as we noted earlier, the security of ENP against dictionary attacks
depends on the computational price of authentication. Thus, a downside of ENP is
that there exists a fundamental tradeoff between performance and security. Instead,
peppered password schemes do not rely on the time to authenticate for security against
dictionary attacks, introducing a significant benefit over ENP.

4.4 Scalability

A notable advantage of ENP is that not needing to store a salt with each password
improves the scalability when compared to salting and key stretching. Thus, the scheme
has the same space complexity as a simply hashed password table, but with significantly
more security. Peppered schemes have similar space complexity, only requiring a single
secret value to be stored. Since peppering is often combined with salting, however, in
practicality ENP still exhibits more space benefits and thus scalability.

In practicality, the added space needed for salts likely is not a problem for modern
machines. Therefore, even though ENP is theoretically more scalable than the other
considered schemes, this is not necessarily a significant consideration.

4.5 Takeaways

ENP remains on par with existing widely used password storage schemes. Though it
achieves less theoretical security against dictionary attacks when compared to peppered
schemes, ENP has the benefit of leading to easier-to-maintain authentication databases.
Compared to key stretching, however, ENP does not seem to offer significant theoretical
advantage. Furthermore, we believe that existing schemes such as salting and peppering
can be just as if not more secure than ENP, and that combinations of these schemes
can achieve similar properties to ENP.

9

Still, ENP is an interesting password scheme proposal that is both secure and main-
tainable. The scheme could be a good choice for administrators worried about inse-
curely salting passwords or the maintainability of a peppering scheme, given that it
requires neither salts nor a pepper to be stored and maintained.

5 Implementation

The ENP Paper suggests two alternative implementations for the scheme, which mainly
vary in terms of how Negative Passwords are generated. We decided to implement both
of them in Python to get a feel for the difficulty of implementing each scheme, as well as
to compare the two schemes. These schemes are called ENPI and ENPII, respectively.

Our implementations can be found at https://github.com/nyrret/857-project.

5.0.1 General Implementation

Our implementations include two primary functions: Register and Login.
In Register, the password is first hashed by SHA128, and then a negative password

is generated for the hash using either ENPI or ENPII. The negative password is then
encrypted using AES and stored in a dictionary with the key being the user. For our
proof-of-concept implementation, we don’t use a real database, but just store everything
locally.

In Login, the hash of the password is found and the encrypted negative password of
the user is found in the database dictionary. The AES-encrypted negative password is
decrypted and the hash of the input password is solved by checking if the hash actually
matches the negative password.

5.0.2 ENPI

As noted above, the primary distinction between ENPI and ENPII lies in the specific
algorithm that is used to generate a negative password given a hashed password. The
algorithm that is used in ENPI is called the prefix algorithm; its steps are shown in
Figure 3. Note that we zero-index into strings, unlike in [1].

The central process of the prefix algorithm is deterministic; the randomness comes
from the fact that we choose a random permutation of the input bit string to perform it
on, and then perform the inverse permutation before adding any entry to the database.
In the central process, we organize our entries into the database by the first index at
which a given bit string disagrees with the permuted hashed password. As such, the
ith entry (zero-indexing, before inverse permutation) will agree with π(H(pass)) up to
the (i − 1)st position, and then it will have the opposite bit in the ith position, and
have ∗s after that. It is clear that all bit strings which do not match π(H(pass)) fall
into one of these categories.

Now we turn our attention the ENPII verification algorithm, and in particular,
checking that a given hashed password matches a given negative password. While
it would be possible to just check that the hashed password does not correspond to
any of the entries in the database, the verification algorithm presented in [1] provides

10

https://github.com/nyrret/857-project

Input: a length-m bit string S
Output: a negative password NP

• Randomly choose a permutation π of m elements

• For each i from 0 to m− 1:

– toAdd = π(S)[0 : i] + ¬π(S)[i] + “ ∗ ”× (m− i− 1)

– add π−1(toAdd) to NP

• Return NP

Figure 3: The prefix algorithm

additional security by checking that the given negative password is of the correct form
for a negative password, as shown in Figure 4. Note that a ”specified position” in an
entry of NP is any position that is not a ∗.

Input: a length-m bit string S and a negative password NP
Output: true or false

• Check that the ith entry (zero-indexed) of NP has i+ 1 specified positions

• Initialize an empty length-m array x

• For each i from 0 to m− 1:

– Check the the ith entry npi of NP has one remaining specified position, say
at index j

– Let x[j] be the opposite of npi[j]

– Check that npk[j] = x[j] for each k > i, and then set each of these entries
to ∗

• Check that x matches S bit-by-bit

Figure 4: Verifying a negative password from the prefix algorithm

Each of these steps is done because any output from the prefix algorithm should
pass the corresponding test. For example, the ith entry in a negative password from
the prefix algorithm has (before inverse permutation) the first i entries agreeing with
π(S), then the next entry disagreeing, and the rest are ∗; this totals i + 1 specified
entries.

The second part of the verification algorithm checks the specific format: the ith
entry should add exactly one new specified position, and that position should be spec-
ified in all future entries. In the ith entry it should disagree with S, while in all future
entries it should agree. This follows, again, directly from the way the prefix algorithm

11

is defined.

5.0.3 ENPII

The ENPII negative password generation algorithm also uses a random permutation,
but it also adds additional randomness to the main part of the algorithm. The steps of
this algorithm are displayed in Figure 5.

Input: a length-m bit string S
Output: a negative password NP

• Randomly choose a permutation π of m elements

• For each i from m− 1 to 2:

– Initiate toAdd= “ ∗ ”×m and let toAdd[i] = ¬π(S)[i]
– Randomly choose distinct j, k from [0, i− 1]

– Let toAdd[j] = π(S)[j] and toAdd[k] = π(S)[k]

– Add π−1(toAdd) to NP

• If index 1 differs from π(S) but 0 doesn’t:

– Initiate toAdd= “ ∗ ” × m and let toAdd[0] = π(S)[0] and toAdd[1] =
¬π(S)[1]

– Randomly choose j from [2,m− 1]

– Let toAdd[j] = 0 and add π−1(toAdd) to NP

– Let toAdd[j] = 1 and add π−1(toAdd) to NP

• If index 0 differs from π(S):

– Initiate toAdd= “ ∗ ”×m and let toAdd[0] = ¬π(S)[0]
– Randomly choose distinct j, k from [1,m− 1]

– Let toAdd[j] = 0, toAdd[k] = 0 and add π−1(toAdd) to NP

– Let toAdd[j] = 0, toAdd[k] = 1 and add π−1(toAdd) to NP

– Randomly choose k ̸= j from [1,m− 1] again (j stays the same)

– Let toAdd[j] = 1, toAdd[k] = 0 and add π−1(toAdd) to NP

– Let toAdd[j] = 1, toAdd[k] = 1 and add π−1(toAdd) to NP

• Return NP

Figure 5: Variant of the prefix algorithm

This algorithm works because if both indices 0 and 1 of any given bit string agree
with π(S), then the first loop will produce at least one entry that matches that bit

12

string. If at least one of those indices disagrees, one of the second two bullets will
produce an entry which matches it. Note that the negative password returned from
this algorithm will have m+ 4 entries.

Since the negative password generation algorithm in ENPII is more complicated,
the corresponding verification algorithm is commensurately more involved. Its steps
can be seen in Figure 6. The function Merge(npj, npk) puts a ∗ wherever npj and npk
disagree, and puts the same symbol as both of them where they agree.

Input: a length-m bit string S and a negative password NP
Output: true or false

• Check that the size of NP is m + 4 and each entry has exactly three specified
positions

• For each pair of indices (j, k) = (m+ 2,m+ 3), (m,m+ 1), and (m− 2,m− 1):

– Check that npj and npk differ in exactly one place

– Let npj = Merge(npj, npk)

• Check that npm and npm+2 differ in exactly one place

• Let npm = Merge(npm, npm+2)

• Initialize an empty length-m array x

• For each i from k − 1 to 0:

– Check that there is only one remaining specified entry of npi, say at index j

– Let x[j] = ¬npi[j]
– Check that npk[j] = x[j] or npk[j] = ∗ for each k < i, and then set each

npk[j] = ∗

• Check that x matches bit-by-bit with S

Figure 6: Verifying a negative password from the ENPII algorithm

This algorithm, as with the one in Figure 4, matches the form of the output of
the corresponding negative password generation algorithm. It is clear from Figure 5
that the size of the negative password is m + 4 and that each entry has exactly three
specified positions. In addition, it is not hard to deduce from the second to bullet
points of Figure 5 that indices (m+2,m+3), (m,m+1), and (m−2,m−1) each have
one place where they differ, as well as (m,m + 2) after merging. The justification of
the loop (second to last bullet) above is similar to that of the analogous step in Figure
4; the only difference is that it is possible for the other elements to be ∗ instead of
specified bits. We leave the details of verifying that this algorithm works to the reader.

13

5.0.4 Implementation Analysis and Testing

Each of ENPI and ENPII were relatively straightforward to implement. Storage is
quite simple for ENP, as the only item that needs to be stored is the encrypted negative
password. There are also no configurations needed for ENP (like key stretching might
need) and all that is used are general hashing and encryption algorithms. The primary
complexity in implementing ENP came from generating negative passwords, which
requires non-trivial permutation algorithms. While non-trivial, we still found these
both to be reasonable to implement; ENPI was, naturally, a bit simpler than ENPII.

We also tested speed of performance between ENPI and ENPII. Each of these
generation and verification algorithms have a theoretical runtime of O(m2), where m is
the size of the output of the cryptographic hash function in bits. Despite the theoretical
result, we wanted to see if there were any empirical differences between the two. To
test this, we timed how long it took to either register or login p different users in a row.
The results are shown here in Figure 7, where p-values of 10 and 100 were used to run
three tests for each process of each algorithm. Figure 7 shows the average runtimes of
each set of three tests.

Figure 7: Code testing results

As can be derived from the table, ENPI was marginally fasater than ENPII, with
a maximum improvement margin of ≈ 5% for Registration and ≈ 12% for Login.

In choosing which of ENPI or ENPII is better, there is little practical difference.
While ENPII is slightly more difficult to implement and slightly slower in runtime
than ENPI, both are simple enough to implement and the speed difference would make
essentially no difference in practice. Theoretical differences between the two should be
the main consideration in choosing which one to use as the practical differences are
negligible, except perhaps for applications with a very high number of users that could
be authenticating at the same time.

14

6 Conclusion

In this paper we provided an analysis and implementation of the ENP scheme, con-
tributing an open-source proof of concept. In our analysis of the scheme, we conclude
that it provides theoretical and practical security on par with existing widely used
schemes. It does not seem to offer a significant edge over such schemes, but could be
useful in scenarios where a database administrator is concerned about insecurely gener-
ating and/or storing external randomness. In future work, it could be good to evaluate
how well ENP might pair as a layer with other schemes, and to conduct experiments
on larger authentication databases.

7 Acknowledgements

We would like to thank Andres Fabrega for his help in scoping our project idea and
encouragement towards are current direction. We are also grateful to Professors Rivest
and Kalai for an engaging semester of 6.857 lectures and for striving to create the best
possible student experience.

References

[1] Wenjian Luo, Yamin Hu, Hao Jiang, and Junteng Wang. Authentication by en-
crypted negative password. IEEE Transactions on Information Forensics and Se-
curity, 14(1):114–128, 2019. doi: 10.1109/TIFS.2018.2844854.

[2] Udi Manber. A simple scheme to make passwords based on one-way functions
much harder to crack. Computers & Security, 15(2):171–176, 1996. ISSN 0167-
4048. doi: https://doi.org/10.1016/0167-4048(96)00003-X. URL https://www.

sciencedirect.com/science/article/pii/016740489600003X.

[3] Craig Webster. Securing passwords with salt, pepper and rainbows.
Barking Iguana, 2009. URL http://www.barkingiguana.com/2009/08/03/

securing-passwords-with-salt-pepper-and-rainbows/.

15

https://www.sciencedirect.com/science/article/pii/016740489600003X
https://www.sciencedirect.com/science/article/pii/016740489600003X
http://www.barkingiguana.com/2009/08/03/securing-passwords-with-salt-pepper-and-rainbows/
http://www.barkingiguana.com/2009/08/03/securing-passwords-with-salt-pepper-and-rainbows/

	Introduction
	Background
	Hashed Passwords
	Salted Passwords
	Key Stretching
	Peppered Passwords
	Encrypted Negative Password (ENP)

	ENP
	Negative Databases
	Registration Algorithm
	Verification Algorithm

	Analysis
	Theoretical Security
	Lookup Table Attacks
	Dictionary Attacks

	Practical Security
	Performance
	Scalability
	Takeaways

	Implementation
	General Implementation
	ENPI
	ENPII
	Implementation Analysis and Testing

	Conclusion
	Acknowledgements

