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1 Introduction

In 2021, Apple unveiled NeuralHash [Inc21], a perceptual hashing system which aims to detect
Child Sexual Abuse Material (CSAM) on images that are uploaded to iCloud. The fundamental
problem that NeuralHash attempts to solve is one of great interest to the worldwide community:
how can we efficiently surveil for various types of abuse without compromising user privacy?

Unfortunately, NeuralHash has been controversial since its release, due to concerns about its effi-
cacy and about user privacy. These concerns have been made concrete, with recent work identifying
problems with NeuralHash’s collision resistance, privacy guarantees, and false positive/negative
rates under adversarial attacks [Str+21; Ygv21; AI21; Dwy21].

Many issues with NeuralHash arise from its usage of deep learning as the mechanism of hashing.
Neural networks are employed because fuzzy image matching is extremely difficult even with rule-
based or classical learning algorithms [DS13; CPZ08], but deep networks are also known to be
sensitive to edge cases, susceptible to adversarial attacks, and prone to unexplainable behavior
[GSS14]. In this project, we use these intuitions and background about deep learning to investigate
NeuralHash’s vulnerabilities and discover potential improvements to the system.

In this paper, we first describe the NeuralHash system (Section 2), including its technical for-
mulation and security goals. Then, in Section 3, we describe the vulnerabilities of NeuralHash
that have already been discovered. In Section 4 we describe in detail a variety of attacks that we
implemented, and demonstrate how they reveal the shortcomings of neural hash and break several
of its key security goals. Finally, we propose and implement several ideas which we believe will
improve the system in Section 5.

Our main contributions are summarized as follows:

• A gradient-based evasion attack with stronger semantic guarantees than previous methods.

• A Generative Adversarial Network (GAN)-based collision attack that generates highly real-
istic colliding images.

• Discovery of the approximate linearity of NeuralHash, leading to the following attacks:

– Novel interpolation evasion attacks that are extremely fast and realistic. Gradients not
required.

– Novel collision generation attacks that also perform well as an inverter that reveals
surprising amounts of information from NeuralHash.

• An information extraction attack that better reveals information from perceptual hashes
compared to prior approaches and uses less data.

• Proposed changes to the architecture as well as adversarial input detection to safeguard
against some of the above attacks along with experiments to validate their effectiveness.
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2 NeuralHash Background

2.1 Functional Specification

Figure 1: NeuralHash Pipeline. Consists of a preprocessing step that transforms images into a
consistent format. This is followed by an embedding network step and a Locality-Sensitive Hashing
step. The output vector from the embedding network is compared with the hyperplanes in the
hashing matrix to produce the output binary hash. [Str+21]

Apple’s NeuralHash CSAM Detection scheme, released with iOS 15, allows automatic detection
of Child Sexual Abuse Material (CSAM) in photos that are uploaded to Apple’s iCloud. This
system depends on three major systems, which we will discuss here:

• NeuralHash

• Private Set Intersection

• Threshold Secret Sharing

NeuralHash is a perceptual hashing system. In contrast with cryptographic hashing, Neural-
Hash values for images preserve perceptual and semantic similarity. These hashes are generated
in two steps. First, a neural network generates a floating-point vector “descriptor” that is a com-
pressed representation of all of the key information in the image. Second, a technique known as
Hyperplane Local Sensitivity Hashing [Con22] converts these real-valued vectors into integer-valued
vectors.

Private Set Intersection (PSI) [BBM21] is a communication protocol used between user’s devices
and Apple’s servers. The PSI protocol is used to preserve user privacy by ensuring that Apple is
unable to learn about users’ images. It also creates a secure communication protocol for Apple to
determine on the server-side if a user’s photos match with existing CSAM images; this prevents
adversarial attacks that would arise if users were able to easily determine which images would be
flagged as CSAM and which would not.

Finally, Threshold Secret Sharing prevents Apple from learning the encryption key specific to the
user until the user has crossed a specific threshold for their number of matches with known CSAM
content. After crossing this threshold, the user is able to decrypt information describing the specific
CSAM content that the user’s images matched with.
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The neural network-based hashing algorithm will be at the core of our investigation. Deep networks
are excellent fuzzy matchers, but they often suffer from unpredictable behavior, for example in
the case of adversarial attacks. It is difficult to prove their properties, which makes it all-the-
more important that we empirically analyze their behaviors carefully, especially under adversarial
conditions.

2.2 Idealized Security Goals for NeuralHash

Here, we define our idealized desiderata for NeuralHash by examining all parties involved and
describing a concrete security policy.

The parties involved with NeuralHash are Apple with their servers and individual users with
their devices and data. The primary objective of NeuralHash is to protect the privacy of user
data. Specifically, Apple should not be able to get any information about the semantic content
of any images on a user’s device. The only exception to this rule is that Apple should be able to
query the user’s device and get a boolean answer to the following question: are there at least 30
instances of CSAM on a user’s device? Apple should be able to run this query at any time.

Some more nuanced desired functionalities are as follows. In order to reduce the number of ad-
versarial attacks to the NeuralHash system, users should not know when they have a ‘match’
with CSAM images in apple’s database. Users may know when Apple runs a query on their device,
but they should not be aware of the result of the query. This serves as a prevention measure for
adversarial behavior. Finally, another desired property to reduce adversarial attacks is that even
with public knowledge of all parts of the NeuralHash system, it should be impossible (or at the
very least, extremely computationally difficult) for an adversary to artificially construct images
that result in false positives or false negatives to Apple’s query.

This last desired functionality is one of the most difficult to guarantee, but is also one of the most
important. Without this assumption, it may be possible for an adversary to hide CSAM on their
device without Apple’s knowledge. It may also be possible for an adversary to modify images on
an innocent person’s device in such a way that Apple falsely detects CSAM.

Clearly, Apple is making a lot of promises with their NeuralHash system. However, Apple uses
deep learning, which traditionally suffers catastrophically from adversarial attacks, edge cases, and
lack of robustness. This is why we conjecture that Apple’s system does not match all the desired
guarantees.

2.3 Obtaining Authorization

There are publicly released directions on how to access Apple’s NeuralHash models which can
be found in releases of iOS 15 and above. For instance, see this github repo. Since we will be doing
all testing on our local machines, we will not be exceeding our authorized access by working with
these models.
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3 Related Work

3.1 Non-Neural Fuzzy Image Matching Algorithms

Fundamentally, NeuralHash aims to be a cryptographically-secure fuzzy matching algorithm,
matching user images with a large database while invariant under various kinds of transformations:
blurring, cropping, rotation, stretching, shearing, etc. While NeuralHash is driven by deep
learning at its core, other approaches to this problem exist. One approach [DS13] applies F-
Transforms to compute similarity measures between images, while another [CPZ08] combines the
minHash algorithm with TF-IDF weighting to generate similarity features.

3.2 Failure Modes of the NeuralHash System

Following NeuralHash’s public announcement, various attacks were proposed to defeat its se-
curity desiderata (Section 2.2). Broadly, researchers found issues with (i) collision resistance, (ii)
computational distinguishability between different perceptual hashes, (iii) adversarial attacks that
artificially induced false positives and negatives, and (iv) non-robustness to basic image transfor-
mations.

i. Collisions: [Dwy21; AI21] The system was designed to produce collisions on images that are
the same, modulo perturbations due to JPEG encoding, resizing, or watermarks, while avoiding
collisions for different images. However, naturally occurring collisions of different images have
been found, where two images of different objects produce identical hashes even without artificial
modification of the images themselves.

ii. Computational Distinguishability: [Str+21] A recent study showed that the cosine distance
between hashes correlates with the strength of the semantic relationship between the original im-
ages. In other words, an adversary that gains access to the hashes of images can gain information
about the original images; this could potentially be a serious security flaw.

iii. Adversarial Attacks: [Str+21; GSS14] Additionally, the weights of the NeuralHash model
have been extracted and made public, allowing for the artificial modification of images to produce
desired hashes. Oftentimes, this artificial modification is not easily visually discernible. This has
opened the door to attacks like transforming innocuous photos into those labelled as CSAM, or
vice versa.

iv. Black-Box Attacks: [Str+21] In addition, certain black box attacks have been shown to
be effective at changing the output of NeuralHash, such as basic image transformations like
translation, rotation, flipping, cropping, and brightness and contrast changes.

3.3 Our Contributions

In this paper, we improve on SOTA gradient-based attacks and provide stronger semantic guaran-
tees than previous methods. We also propose an entirely novel class of powerful, black-box attacks
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using image interpolation. Finally, we propose and validate changes to the architecture as well as
adversarial input detection to safeguard against some of the above attacks.
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4 Attacks

In this section we provide a technical overview of the attacks we propose and find successful in
breaking a security goal of the NeuralHash system. In section 4.1 we formally describe the
security goals we break with our attacks and also describe some notation that we use throughout.
In sections 4.2 and 4.3, we describe the two main classes of attacks we propose: those that use
the gradients of the model and therefore require full model access, and black-box attacks that
only require seeing model outputs. For each attack that we propose, we explain what prior work
has been done in attempting this type of attack, what our approach was, why our approach was
reasonable, and the results from performing the attack.

4.1 Formal Security Definitions

In all of our attacks we primarily focus on breaking the perceptual hashing algorithm proposed
by Apple’s NeuralHash system. Such a perceptual hashing algorithm should have the following
three properties:

1. Let x1 and x2 be any semantically similar images and N (x) be the NeuralHash perceptual
hashing algorithm which maps images spaceX → {0, 1}96. It is the case thatN (x1) = N (x2).
We call this the neighborhood property of N (x).

2. Let x1 and x2 be any images that are not semantically similar and N (x) be the Neural-
Hash perceptual hashing algorithm which maps images space X → {0, 1}96. It is the case
that first, N (x1) ̸= N (x2), and second, the distributions of N (x1), N (x2) over {0, 1}96
look indistinguishable to a computationally bounded adversary (the hashes look like random
elements of the hash space). We call this the uniform hashing property of N (x).

3. Given target hash h∗, it should be impossible for a computationally bounded adversary to
generate any image x such that N (x) = h∗. We call this the noninvertibility property of
N (x), which extends the uniform hashing property.

These security properties lend themselves naturally to three main attacks:

1. Given image x, find semantically similar image x′ such that N (x) ̸= N (x′). This evasion
attack breaks the neighborhood property of N (x).

2. Given image x, find any image x′ (semantically similar to x or not), such that N (x) = N (x′).
This collision-generation attack breaks both the uniform hashing and noninvertibility
properties of N (x).

3. Given image x which belongs to one of n known image classes {C1, C2, ..., Cn}, predict target
class Ct which probability negligibly greater than 1

n . This information-leakage attack
breaks the uniform hashing property of N (x).
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We show the implementation of these attacks in the following sections. In order to compare the
similarity between images, we use a cosine distance metric. That is, given two 96-bit hashes h1,
h2, we treat them as 96-element vectors and compute

cos(h1, h2) =
h1 · h2
|h1||h2|

= 1−HammingDistance(h1, h2).

4.2 Gradient-Based Attacks

In this subsection we describe gradient-based attacks for both evasion and collision generation,
which require access to the full NeuralHash model and its gradients.

Key takeaways:

• Evading detection is strikingly easy.

• Generation of realistic collision is possible with a Generative Adversarial Network
(GAN).

4.2.1 Gradient-Based Evasion Attack

Attack Description. Our evasion attack exploits the sensitivity of neural networks to small
amounts of adversarial noise; [GSS14] we compute a ∆x such that N (x) ̸= N (x+∆x) using
projected gradient descent:

δ(∆x)′i := ∇(∆x)i (N (x0 + (∆x)i)−N (x0))
2 unconstrained optim (1)

δ(∆x)i := δ(∆x)′i ·
min (ϵ, ∥δ(∆x)′i∥)

∥∆δ(∆x)′i∥
projection within L2 ball (2)

(∆x)i+1 := (∆x)i + αδ(∆x)i, (3)

where (∆x)i is the computed delta image after i steps of corruption, α is the learning rate, and ϵ
is the maximum L2 norm of ∆x. Finally, x′ = x+∆x is our adversarial image.

Comparison to Prior Work. [Str+21; Ath21] have attempted gradient-based evasion attacks,
but to the best of our knowledge, their approaches all involve soft penalties on ∆x, e.g. adding
a weight decay term to the loss. This may permit large changes to the image, depending on the
whim of the optimizer. By contrast, we explicitly constrain ∆x within an L2 ball using a simple
projection (Eqn. 2), which guarantees minimal disruption of semantic content.

Attack Results. We consider an attack “successful” iff (i) N (x) ̸= N (x+∆x) and (ii) x and
x + ∆x contain the same semantic information. To formalize the latter concept, we adopt the
Structural Similarity Index Measure (SSIM) metric:

(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y)(σ
2
x + σ2

y + c2)
,
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Figure 2: The space of images with the same MSE to the reference image consists of many images
of varying degrees of structural similarity. Image from https://www.cns.nyu.edu/~lcv/ssim/.

where x and y are images with means µx, µy, variances σ
2
x, σ

2
y , and covariance σxy. The intuition is

that by accounting for mean, variance, and covariance in the pixel space, SSIM focuses on structure
much better than e.g. Mean-Squared Error (MSE), which can be distracted by noise.

Running evaluations on a subset of ImageNet called ImageNette [Fas19], we find that this attack
method succeeds 100% of the time with average SSIM similarity of 99.6% (±0.003 error in a 95%
confidence interval). The PGD optimization of ∆x is very quick, taking < 1 second each on a
MacBook CPU.

We show a qualitative example of an adversarial attack below. While each pair of images looks
identical to the human eye, NeuralHash fails to hash them to the same value.

Figure 3: The two images are almost visually identical but have different hashes.

We have successfully broken the neighborhood property (Section 4.1) of NeuralHash. The ease
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with which we can alter hashes and have virtually no perceptible impact on semantic content is
striking.

4.2.2 GAN-Based Collision Generation Attack

Related Attacks. There have been many prior examples of gradient based collision attacks. For
example, it has been shown that from random noise it is possible to generate an image that collides
with a target hash [Xu+19]. It has also been shown that it is possible to generate an image that
collides with a target hash, starting with a source image [Ath21]. However, one limitation with
both these approaches is that the final image produced does not look very realistic – the images are
often shapeless or littered with random splotches of colors. In some applications it might actually
be desirable to produce realistic images that result in a hash collision. Another motivation for
restricting the domain of images to those that are ‘realistic’ or ‘natural’, is that this process may
actually reveal more information about the semantic contents of the image from which the target
has was generated.

Figure 4: Pipeline for our GAN collision attack.

Attack Description. Recall that in a collision generation attack, given image x, we wish to
find any image x′ such that N (x) = h∗ = N (x′). Our high level approach for this attack is
described in Figure 4. Most notably, in order to restrict the domain of generated images to those
that are realistic, we use a GAN, or Generative Adversarial Network. We can treat the GAN as a
differentiable function that takes in latent vector of parameters l and returns G(l), an image from
the domain of realistic looking images. We let our guess image x′ = G(l). Since l is initialized
randomly, N (x′) ̸= h∗ with high probability. However, we can iteratively update l′ in order
to produce x′ with the desired properties. We define a loss function over the differences in the
resulting hashes

L(l, h∗) = (N (G(l))− h∗)2,

and iteratively update l using stochastic gradient descent.

Some additional information about our approach is as follows. We used a pretrained GAN trained
on the ‘celebAHQ-512’ dataset of celebrity faces, and as such, our source image x is also an image
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of a face. Another detail is that in the loss function we do not operate on the 96-bit hash value,
but rather a pre-hash value that is much more differentiable.

Figure 5: We can generate ”realistic” looking images that collide with a known hash by generating
an image with a close hash, and then using gradient-descent methods to add noise that produces
the desired hash.

Attack Results. The results from this approach were quite promising and can be seen in Figure 5.
The source image is shown on the left, the image resulting from the optimization process described
in this section is shown in the middle, and the rightmost column contains a colliding image. Note
that the images produced by the GAN had hashes with only a few bits differing from the target.
A small amount of adversarial noise (using the method described in section 4.3.1 using an inverted
loss function) was all that was required in order to find a hash collision. While generating collisions
was very easy (a few seconds with a decent gpu), the amount of semantic information revealed
about the source image from the target hash was not as high as we would have hoped. Partly, this
is due to the fact that the GAN we used was poorly trained and suffered from mode collapse – it
kept producing images of white women regardless of input. It is unclear whether a better model
would yield better results, or if the domain of images even when restricted to realistic faces is still
too combinatorially large to expect the target hash to real information about the source.

4.3 Black-Box Attacks

In this subsection we describe gradient-based attacks for evasion, collision generation, and infor-
mation leakage all of which only require black-box access to the NeuralHash model.

Key takeaways:

• NeuralHash is approximately linear!

• Approximate linearity can be exploited for black-box evasion, collision.

• NeuralHash leaks information; NOT private.
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4.3.1 Interpolation Evasion Attack

Attack Description. This attack and the attack in the next section make use of interpolation,
which is is a novel concept when applied to neural hash. We describe this process formally below:

Figure 6: Image produced by interpolation of a face and a tree, with parameter α denoting the
proportion of the first image.

Consider taking two source images x1 and x2 and linearly interpolating them with respect to some
parameter α. Let the resulting image be

Iα = αx1 + (1− α)x2.

To motivate our approach, we visualize how the hash of the interpolated image changes with respect
to the hash of x1 and x2 and different values of α.

Figure 7: This graph demonstrate the approximately piece-wise linear property of neural hash. The
graphed orange and blue lines show the cosine distance between the interpolated image at different
levels of α with respect to the image of Kevin and the Tree, respectively. The green line shows the
cosine distance between adjacent interpolated images.
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We see from the graphs in Figure 7 that as alpha changes, the cosine distance of Iα from the original
images x1 and x2 changes nearly piecewise linearly. This is extremely strong evidence that Apple’s
perceptual hashing model is not meeting its security goals. If the algorithm was in fact meeting
the security goals, then we would expect the orange, blue lines to change violently between 1 and
roughly 0.5. This is because images that are in the same neighborhood of each other will have the
same hash (and therefore a cos distance of 1. Outside the neighborhood function the hash should
be a random element of the hash space and the average cosine distance should be 0.5.

We abuse this approximate piecewise linear property of neural hash in our attacks. Recall that
the goal of an evasion attack is, given source x, find semantically similar image x′ such that
N (x) ̸= N (x′). We simply let x′ = Iα for the largest possible alpha (ie. alpha closest to 1) such
that N (x) ̸= N (Iα).

Figure 8: Adversarial images with different hashes generated via interpolation.

Attack Results. This attack works quite well as can be seen in Figure 8. Not only do the
adversarial images look remarkably similar to the source, but this attack is extremely fast and does
not require any knowledge of model gradients. Additionally, it requires very limited knowledge of
model outputs.
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4.3.2 Interpolation Collision Generation Attack

Attack Description. The previous subsection seems to suggest that NeuralHash is approxi-
mately linear. Can we exploit this property to generate collisions? Consider a source image x and
corresponding target hash h∗ = N (x). Also consider a database of images {x1, x2, .., xk} and their
known hashes {h1, h2, .., hk}. Let {p1, p2, .., pk} ∈ [−1, 1]k be some parameters such that

k∑
i=1

|pi| = 1.

The motivation behind this attack is that if we could find a setting of parameters {p1, p2, .., pk}
such that

k∑
i=1

pihi = h∗

then the interpolation property of the NeuralHash model would imply that

N

(
k∑

i=1

pixi

)
≈ h∗.

We test this hypothesis with experiments. Specifically, we attempt to find parameters {p1, p2, .., pk}
that minimize the following objective function:

L(p1, p2, .., pk, h
∗) =

(
k∑

i=1

pihi − h∗

)2

−
k∑

i=1

pi log(pi).

Note that the second term here aims to reduce entropy or, in other words, use the fewest number
of images possible to achieve the objective. L(·) is optimized using gradient descent.

Some additional information about our approach is as follows. Our dataset is made up of 450 images
scraped from Bing from searching the query: tree. Another detail is that in the loss function we
do not operate on the 96-bit hash value, but rather a pre-hash value that is much more expressive.
Finally, our loss function makes uses of weights to balance the different losses, but we have omitted
the details here for the sake of clarity.

Attack Results. Our results, seen in Figure 9 are quite impressive. While we are not directly
able to find a perfect colliding image, the cosine distance of the resulting images we find is several
standard deviations above the mean of 0.5 (standard deviation is roughly 0.05), meaning that
this method performs much better than simply random guessing or random generation of images.
Another interesting property that emerged is that the image xi that corresponded to parameter pi
with the largest magnitude, was often an image in the dataset that was very semantically similar to
the source image. These results are very exciting, and we believe that with an even larger dataset
(with images in the hundreds of millions) this approach could be groundbreaking.

4.3.3 Information Extraction Attack

In this subsection we describe our information extraction attacks. The rationale behind this attack
comes from the fact that NeuralHash is a perceptual hashing algorithm. Unlike cryptographic
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Figure 9: The two images are almost visually identical but have different hashes.

hashes, this means that images that are similar should hash closer together than images that are not
similar. Because of this property, we hypothesized that image hashes must leak some information
about their images. This property may not be apparent for a single image, but it may be more
obvious over a distribution of images.

To run these attacks, we used images from ImageNet. Specifically, the 50,000 validation set images
from the ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010). There are 1000
ImageNet categories, and the validation set contains 50 images per category.

Attempt 1: Cosine Similarity

Attack (v1) Description. In our first attempt at this attack, we attempted to use cosine simi-
larity between a brand-new hash (turned into a 96-bit vector) and a lookup table of hashes (also
vectorized) for known images to glean more information about the image. Cosine similarity is a
well-known metric to compare similarity of vectors. It is also proportional to dot-product and
Euclidean distance.

The details of this experiment are as follows. We calculated the hashes of the 50,000 images in our
dataset. Next, for a randomly chosen image x in each ImageNet category, we calculated the cosine
similarity distance between x and every other image in the dataset. We used these to calculate
the average cosine similarity distance between x and each of the 1000 ImageNet categories (the
average was adjusted to avoid including the similarity between x and itself for the category that x
belonged to). We then turned the cosine similarity data (where si is the similarity for category i)
into a probability pi for each category as follows:
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pi =
si∑1000
i=1 si

Attack (v1) Results. Unfortunately (and interestingly) we observed that the probabilities of the
target categories for each of the randomly chosen images was consistently close to 0.001, which is
the probability for a category given uniform guessing. Specifically, for all of the chosen images, the
average probability of the target category was 0.00100. The minimum and maximum probabilities
over all of the images were respectively 0.00089 and 0.00111.

Given our results, we hypothesized that our cosine similarity distance metric was too simple to
extract information from image hashes. We pivoted to a second attack: using a neural network
that takes image hashes as inputs and outputs the image’s ImageNet category.

Attempt 2: Neural Network

Connection to Prior Work. Others have done similar analyses with neural networks to measure
information leakage of NeuralHash hashes. Specifically, Struppek et al. uses a fully-connected
network with 3 hidden layers to predict ImageNet category from an image hash [Str+21]. Struppek
et al report that their models show a top-5 accuracy of 12.03%, when they train on around 83,000
images. Top-5 accuracy measures the percentage of cases in which the target category is predicted
as one of the top-5 results of the model.

However, we claim that prior work takes a very machine-learning-based approach to quantify infor-
mation leakage from a hash. For instance, what if the target category of an input image is ”dog”
and the top-5 categories include ”wolf” and ”cat.” Despite ”dog” not being present among the
top-5, we should assign weight to the fact that the model has likely extracted some information
from the hash indicating that the image represents an animal.

We do this using the ImageNet class hierarchy. While there are 1000 ”leaf” classes of ImageNet
— highly specific categories that are the most specific description of an image — there are also
”parent” classes that provide higher level categorizations. For instance, class ID 1153, ”butterfly,”
is a parent class to class ID 600, ”cicada.” Using this information, we create a tree of the ImageNet
hierarchy and use the closest ancestor of any two classes to calculate a ”distance” between them.

Attack (v2) Description. Our neural network outputs probabilities for each of the 1000 ImageNet
categories. We use these probabilities to calculate an expected distance to the target ImageNet
category. While training our neural network, we adjust our weights to minimize this expected
distance.

While evaluating our model, instead of using metrics like top-5 accuracy, we compare our model’s
expected distance to the target class with a baseline distance, which represents the distance to the
target class assuming the probabilities for all of the classes is uniform (0.001).

Attack (v2) Results. Ultimately we find that our model’s expected distance to the target class
is 10% closer than the baseline distance, indicating that there is in fact information leakage from
NeuralHash hashes. Importantly, the metric that we define allows us to better quantify the
magnitude of leakage, compared to top-5 accuracy and other scores that severely underestimate
the amount of information learned.
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5 NeuralHash Improvements

Key takeaways:

• SHA-at-the-End is simple and effective!

• Preventing adversarial examples is a fundamentally hard problem, intrinsically
tied to the nature of complicated differentiable functions like neural networks.
While adversarial input detection is possible, it is not an effective solution.

5.1 SHA-at-the-End

The black-box interpolation and information extraction attacks presented in Section 4.3 all rely on
the approximate linearity of N (x). What if we could nullify this property?

Method Description. To address the undesirable linearity of NeuralHash, we propose a simple
yet effective extension: adding a SHA-256 block at the very end of the computation. Revisiting
the security definitions in Section 4.1, we find that this strengthens the uniform hashing and
noninvertibility properties while maintaining the neighborhood property: if N (x) = N (x′), then
it must be true that SHA (N (x)) = SHA (N (x′)). Moreover, if N (x) ̸= N (x′), then under the
Random Oracle Model (ROM) their hashes will (i) look uniformly random and (ii) be non-invertible.

Figure 10: Our proposed new NeuralHash pipeline including an encryption step at the end.

Comment on Novelty/Necessity. To the best of our knowledge, [Str+21] and other popular
blogposts discussing NeuralHash have not proposed this modification. Apple’s technical report
on NeuralHash [Inc21] suggests that the company has direct access to N (x).

Method Results. Based on the analysis above, SHA-at-the-end should work well given the the-
oretical assumptions; here, we provide some concrete empirical evidence. First, we check whether
the interpolation graph behaves as expected (Section 4.3.1); as seen in Figure 11, the cosine sim-
ilarity between the two images indeed hovers around 0.5 (except at the borders), and the cosine
similarity between adjacent interpolations oscillates between 1 and ≈ 0.5. These findings suggest
that SHA-at-the-end can successfully defend against the black-box interpolation attacks presented
in Sections 4.3.1 and 4.3.2, since linearity is broken.

Next, we attempt the same information recovery attack as described in Section 4.3.3: the top-1
accuracy of the extraction model drops to 6%, which is less than half of the original top-1 accu-
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Figure 11: Interpolation Results using SHA-at-the-End (Compare to Figure 7)

racy. While this is still above random, we attribute the difference to possibly imperfect evaluation
conditions: class imbalance in the dataset, as well as less-than-ideal sample size.

5.2 Adversarial Input Detection

While adversarial inputs are unavoidable for large differentiable functions like NeuralHash’s
neural network, we can mitigate the effect of gradient-based attacks by detecting adversarially-
constructed inputs at runtime.

Method Description. We train a neural network to detect inputs that are strongly out of
distribution. This is done via a simple binary classifier, implemented as a three-layer convolutional
neural network (Figure 12): given any image x, it outputs a binary label identifying x as a normal
image or an adversarial image.

Figure 12: Convolutional Model Architecture of Adversarial Input Detector

Comment on Novelty. While adversarial image detection is well-studied in general contexts
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[Xu+19], it has not been studied explicitly on NeuralHash, to the best of our knowledge.

Method Results. A convolutional neural network was trained and evaluated on disjoint subsets
of ImageNette. Specifically, the dataset was constructed by sampling ImageNette, generating ad-
versarial images that had non-matching hashes w.r.t. the original, and storing the pair in an array.
Non-perturbed images were assigned the label 0, whereas attacked images were assigned a 1.

We found that the effectiveness of adversarial input detection (in preventing gradient-based evasion
attacks) varied significantly based on the noise parameter ϵ (Section 4.2). For ϵ = 0.05, the neural
network was completely unable to converge. At larger noise margins (where the processed images
have larger differences), however, we found better success: when ϵ = 0.5, the classifier had 82%
accuracy. Note that at ϵ = 0.5 the adversarial nature of the input can already be detected by the
naked eye; it is a generous noise constraint.

Overall, adversarial input detection is hard. Not only are they difficult-to-detect on a pixel level, but
literature around adversarial inputs follows a game of cat-and-mouse, where people design fragile
algorithms to overcome adversarial inputs (oftentimes neural networks themselves with adversarial
examples of their own), only to see them broken easily.
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6 Conclusion

In this paper, we propose and analyze a plethora of attacks that show the weakness and vulnera-
bilities of Apple’s NeuralHash perceptual hashing algorithm. Along the way, we improve SOTA
gradient-based attacks (more realistic, stronger semantic guarantees) and propose an entirely novel
class of powerful interpolation-based black-box attacks. In addition, we propose a information
extraction attack that uses less data and reveals more information compared to prior methods.
Finally, we propose and validate changes to the architecture as well as adversarial input detection
to safeguard against some of the above attacks.

In particular, our work has shown that adversarial examples are the Achilles heel of NeuralHash;
they are easy to implement and highly effective (Section 4.2). The use of neural networks for
perceptual hashing is a double edged sword: neural networks are the only current feasible way to
do convincing perceptual hashing, but they are also extremely vulnerable to adversarial attacks.
Future approaches may find more success combining symbolic reasoning with neural networks,
allowing us to exploit the strengths of deep learning while mitigating its weaknesses.

Some interesting directions for future work:

• The design of a non-differentiable fuzzy matcher for images.

• In Section 8, we demonstrated the power of interpolation based methods not only for finding
hash collisions, but also for inverting a hash given a database of candidate images. While our
analysis was limited by the small size of the reference dataset, using a larger database might
yield interesting results on many different types of images.
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