
Secure Multiparty 
Computation

and Team Matching



Shamir Secret Sharing

Secret values a, b:



Shamir Secret Sharing

To share a,b create two random degree t polynomials A(), B() as follows:

Set A(0) = a and B(0) = b

Secret values a, b:



Shamir Secret Sharing

To share a,b create two random degree t polynomials A(), B() as follows:

Set A(0) = a and B(0) = b

n shares are then computed as: 

Secret values a, b:

A() and B() are degree t polynomials and can be uniquely defined by n=t+1 points



Uses:

The obvious: sharing of secrets

The secret value could be a key that is tied to {a bitcoin wallet, disk encryption, etc}

Recovering the key then requires cooperation!



Uses:

The obvious: sharing of secrets

The secret value could be a key that is tied to {a bitcoin wallet, disk encryption, etc}

Recovering the key then requires cooperation!

Tiered key management:
s Threshold = 1 out of 1



Uses:

The obvious: sharing of secrets

The secret value could be a key that is tied to {a bitcoin wallet, disk encryption, etc}

Recovering the key then requires cooperation!

Tiered key management:
s

s1 s2 s3

Threshold = 1 out of 1

Threshold = 2 out of 3



Uses:

The obvious: sharing of secrets

The secret value could be a key that is tied to {a bitcoin wallet, disk encryption, etc}

Recovering the key then requires cooperation!

Tiered key management:
s

s1 s2 s3

Threshold = 1 out of 1

Threshold = 2 out of 3

s11 s12
Threshold = 2 out of 2



Uses:

The obvious: sharing of secrets

The secret value could be a key that is tied to {a bitcoin wallet, disk encryption, etc}

Recovering the key then requires cooperation!

Tiered key management:
s

s1 s2 s3

Threshold = 1 out of 1

Threshold = 2 out of 3

s11 s12
Threshold = 2 out of 2

Recover s1



Secure Multiparty Computation (BGW)

Alice, Bob, and Carla all have a secret value. 

They want to learn the output of some function on their secret inputs, but they don’t 
want the others to learn their input!

Canonical example of this is salary: several companies may want to learn what the 
average salary is for a role, but they want to keep their payroll information private.



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

a2

a3

a1

Each party sends Shamir Secret Shares of their input to the other parties



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

b1

b3

a1

a2 , b2

a3

Each party sends Shamir Secret Shares of their input to the other parties



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

c1 c3

a1 , b1

a2 , b2

a3 , b3 , 
c3

Each party sends Shamir Secret Shares of their input to the other parties



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

a1 , b1 , 
c1

a2 , b2 , c2

a3 , b3 , 
c3

Now what?



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

a1 , b1 , 
c1

a2 , b2 , c2

a3 , b3 , 
c3

They want to compute 
f(a,b,c) = avg(a,b,c) = 

sum(a,b,c)/3



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

a1 , b1 , 
c1

a2 , b2 , c2

a3 , b3 , 
c3

How to compute 
a+b+c?



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

sum(a,b,c)1 = a1 + b1 + c1

Add shares locally!

sum(a,b,c)2 = a2 + b2 + c2

sum(a,b,c)3 = a3 + b3 + c3



Secure Multiparty Computation (yay)

Alice’s secret is A(0) where A() = α0x
0 + α1x

1 + α2x
2 (α1 and α2 are random! α0 = a)

(need 3 points to define a degree 2 polynomial: Alice, Bob, and Carla each have one point



Secure Multiparty Computation (yay)

Alice’s secret is A(0) where A() = α0x
0 + α1x

1 + α2x
2 (α1 and α2 are random! α0 = a)

(need 3 points to define a degree 2 polynomial: Alice, Bob, and Carla each have one point

B() = β0x
0 + β1x

1 + β2x
2(β1 and β2 are random! β0 = b)

C() = γ0x
0 + γ1x

1 + γ2x
2 (γ1 and γ2 are random! γ0 = b)



Secure Multiparty Computation (yay)

Alice’s secret is A(0) where A() = α0x
0 + α1x

1 + α2x
2 (α1 and α2 are random! α0 = a)

(need 3 points to define a degree 2 polynomial: Alice, Bob, and Carla each have one point

A() + B() + C() = D() where D(0) = A(0) + B(0) + C(0) (!!)

When Alice, Bob, and Carla add their shares locally they obtain a share (a point) of D() that can later be 
interpolated to learn D() and evaluate D(0) to learn the sum of their secret inputs!

B() = β0x
0 + β1x

1 + β2x
2(β1 and β2 are random! β0 = b)

C() = γ0x
0 + γ1x

1 + γ2x
2 (γ1 and γ2 are random! γ0 = b)



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

d1 = a1 + b1 + c1 d2 = a2 + b2 + c2

d3 = a3 + b3 + c3

d3

d3

d1

d2

d1

d2



Secure Multiparty Computation (yay)

Alice (1) Bob (2)

Carla (3)

Recover: d = a + b + c
Divide d by 3 to get average salary

Recover: d = a + b + c
Divide d by 3 to get average salary

Recover: d = a + b + c
Divide d by 3 to get average salary



MPC security model

Alice, Bob, and Carla learn nothing from participating in the protocol that could not 
have also been learned from only their own input and the protocol output.



MPC security model

Alice, Bob, and Carla learn nothing from participating in the protocol that could not 
have also been learned from only their own input and the protocol output.

This is why the computation for average salary outputted the sum of salaries, not 
the average! 

If each participant knows the average salary and the number of participants, they 
can easily compute the sum of salaries.



MPC security model

Alice, Bob, and Carla learn nothing from participating in the protocol that could not 
have also been learned from only their own input and the protocol output.

This is why the computation for average salary outputted the sum of salaries, not 
the average! 

If each participant knows the average salary and the number of participants, they 
can easily compute the sum of salaries.

No point in computing a sum in 2pc (you’d learn the other party’s input!)



Multiplication in MPC 

Multiplication by a constant c can be done locally the same way as addition: 
multiply the shares αn by c to get a share of a polynomial D() where D(0) = cα0

Multiplication of secrets is harder. 



Multiplication in MPC 

Multiplication by a constant c can be done locally the same way as addition: 
multiply the shares αn by c to get a share of a polynomial D() where D(0) = cα0

Multiplication of secrets is harder. 

Firstly, this will raise the degree of the polynomial! 

A() = α0x
0 + α1x

1 + α2x
2 

B() = β0x
0 + β1x

1 + β2x
2

A() * B() will have degree 4! You don’t have enough shares to recover that…



Multiplication in MPC 

Multiplication by a constant c can be done locally the same way as addition: 
multiply the shares αn by c to get a share of a polynomial D() where D(0) = cα0

Multiplication of secrets is harder. 

Firstly, this will raise the degree of the polynomial! 
A() = α0x

0 + α1x
1 + α2x

2 

B() = β0x
0 + β1x

1 + β2x
2

A() * B() will have degree 4! You don’t have enough shares to recover that…

Also, A() * B() will not necessarily be a random polynomial. 

Degree reduction and rerandomization is an interactive process that requires communication between 
Alice, Bob, and Carla.


