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Random Oracle Model (ROM)



Ideal Hash Function

● A hash function should satisfy main two properties: one-wayness and 
collision resistance.

● In many applications, we also want the hash function to “look random”.
● Basic properties of a hash function =!=> random function!
● What do we want from an “ideal” hash function? 

○ We want it to behave like a random function. That is, a function where f(x) is a truly random 
string, for every x, independent of all other inputs.



“Random” function

● A random function maps every input to a new random string. If F is some random 
function, its table may look like:

Input Output (d bits)

0 (A totally random d-bit string).

01 (Another totally random d-bit string).

00 (A third totally random d-bit string).

01 (Yet another totally random d-bit string).



● For every input, we sample a fresh random string of d bits .
● Important note: every random string is independent of all the other 

ones. 
● Problem: no hash function (that’s efficiently computable) can be a 

truly random function.



ROM

● Summary so far: we would like hash functions to behave like truly random 
functions, but no practical hash function will ever be a truly random 
function.

● Solution: we assume we have access to a random oracle: 
theoretical/abstract (public) “black-box” that implements a truly random 
function:
○ For every query x, check if x has been queried before. If yes, be 

consistent with prior answer. If no, sample a new d-bit random string.



ROM

x

H(x)



ROM

● The inner workings of the oracle H (the gnome) are unknown and magical. 
It just somehow implements this random function f.

● ROM: (theoretical) “world” where random oracles exists (i.e., a hypothetical 
world where perfect hash functions exist).
○ The ROM is a tool that we use in proofs.
○ We normally call the non-ROM world the standard model.



ROM

● First, we prove a protocol/scheme/etc is secure in the random oracle 
model. 

● Then, when we implement this protocol in the real world, we replace the 
random oracle for a real hash function (e.g., SHA-256).  
○ And we hope that this is good enough! I.e., that the behavior of a 

(good) hash function is indistinguishable from a truly random oracle.



Problems with ROM

● The random oracle model does not represent reality! A random oracle 
doesn’t (and will never) exist.

● What does it mean for a hash function to emulate a random oracle model? 
This is not even well defined…
○ Note: this is different from saying “we assume AES is a PRF”. We do 

have a definition of what it means to behave like a PRF.
● What does a proof in the ROM say about a proof in the real world? We don’t 

really know…
● A lot of active research into these questions.



But…

● A ROM proof is still valuable: it shows the protocol has no “intrinsic” 
design flaws.

● There have been no attacks on implemented protocols that have been 
proven secure in the random oracle model!
○ However, there are some contrived examples of schemes that have 

been proven to be insecure for any instantiation of the random oracle!
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Commitments

Cryptographic commitment: 

● like a safe
○ Alice can put her message in the safe, lock it, and give the safe to Bob
○ Until Alice opens the safe, Bob learns nothing about Alice’s message
○ Yet Alice cannot change her message after she places it in the safe

These properties are known as hiding and binding 

Hash functions are commonly used for commitments in pratice

One wayness provides hiding while collision resistance provides binding



Commitments using Hash functions

To commit to a message m:

1. Alice generates a random string r and computes commitm= H(r||m)
2. She then sends commitm to Bob.
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Commitments using Hash functions: Intermission

To commit to a message m:

1. Alice generates a random string r and computes commitm= H(r||m)
2. She then sends commitm to Bob.

Why r||m instead of just m?

Hash functions are deterministic! 

m could be chosen from a distribution that makes it easy for Bob to guess and 
check.

m ←{heads, tails}

Bob only needs to try two strings! So include r to ensure the message space is 
uniformly random in the length of r
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Commitments using Hash functions

To commit to a message m:

1. Alice generates a random string r and computes commitm= H(r||m)
2. She then sends commitm to Bob.

Opening commitm:

1. Alice sends m’ and r to Bob
2. Bob computes commitm’= H(r||m’)
3. Bob checks that commitm’ == commitm

Binding: m != m’ requires Alice to find a collision for H()!

Hiding: If Bob can learn m from H(r||m) then Bob can invert H()



Not covered:

Proofs for hiding and binding in ROM

Use in practice:

Zero knowledge! 

Verifiable secret sharing! 

both cool areas for a project :)
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Passwords

Password based login: a password is a ‘something you know’ based login 
mechanism

In order to login to an account, Alice must prove that she knows the password 
associated with that account

However, we really really do not want the server to store passwords!

➔ If it gets hacked, all the passwords are revealed :(



Passwords: defending against breaches

Instead of storing pwd directly, the server stores H(pwd)

Are we done?
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Passwords: defending against breaches

Passwords are definitely not chosen from a random distribution

Hackers can compute H(pwd) for a bunch of popular passwords offline 
then easily compare against the server’s database of hashed 
passwords!

Worse, many people use the same passwords – adversary only needs to 
learn which pwd results in H(pwd) one time

Aside: it is slightly more complicated than this, but the technique 
(rainbow tables) is obsolete so we won't cover it
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Passwords: salt your passwords - Intermission

We had this very same problem with commitments and solved it with r

For passwords, this is called a salt and the server stores [H(pwd||salt), salt]

Why store salt on the server?

The server is the one computing H(pwd||salt)

Why?

Clients must login with pwd NOT H(pwd)!!! Very important. If the client sends 
H(pwd) to login, then H(pwd) effectively is the password. Ruins all the effort to 
store hashes instead of passwords in case of breach :(



Passwords: salt your passwords

We had this very same problem with commitments and solved it with r

For passwords, this is called a salt and the server stores [H(pwd||salt), salt]

This prevents an adversary from precomputing hashes of popular passwords

1. Users with the same pwd will now have different salts
2. Adversary may have ideas of popular passwords, but salts are uniformly 

random so it can’t guess them in advance!
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Passwords: H(H(H(H(H(pwd)))))

In practice the server actually hashes the password many times, not just once

This is to make brute force attacks harder!

Computing a bunch of hashes is time consuming and expensive (see: Bitcoin)

Say Eve breaches a password database and learns that account 
aliceincryptoland has password [H(pwd||salt), salt]

If the password is hashed n times, Eve has to compute n hashes to check each 
password she wants to guess

This doesn’t make things noticeably slower for Alice, but will really ruin Eve’s day 
on a DB of millions of passwords



Questions?


