
Massachusetts Institute of Technology Handout R3
6.857: Applied Cryptography and Security February 18, 2022
Professors Ronald L. Rivest and Yael Tauman Kalai Andrés Fábrega

Recitation 3: Recap

Today we will do a recapt of the story so far. We are soon going to start switching out of the “secret-key
encryption” module of the class and into other topics (hash functions, key exchange, public-key crypto,
etc). So, today we will review some of the core concepts we have seen so far, particularly those that have
public-key analogues.

We started the class with one motivating question: how can I send a message to another person in the
presence of an adversary? This led us to our first primitive: encryption schemes.

1 Encryption Schemes

In class, we saw the definition of an encryption scheme:

Definition 1.1. An encryption scheme is a triplet of PPT algorithms Π = (Gen,Enc,Dec) with an associated
(finite) message space M, key space K, and ciphertext space C such that:

• Gen(1n) : outputs a secret key k ∈ K.

• Enc(k,m) : on input k ∈ K,m ∈ M, outputs an associated ciphertext c ∈ C.

• Dec(k, c) : on input k ∈ K, c ∈ C, outputs the associated message m ∈ M.

Gen must be randomized, but Enc need not be, for now (looking ahead, some security definitions will
require this). Also, note that M and K are specified a priori, but C is a function of the latter two sets (i.e.,
all possible outputs of Enc, when evaluated at all possible combinations of messages and keys). Further, Dec
is deterministic, and we assume perfect correctness: ∀n ∈ N ,m ∈ M it holds that

Pr
k←Gen(1n)

[Dec(k,Enc(k,m)) = m] = 1 (1)

In addition to correctness, the other property we care about is, of course, security. There are many
definitions of security, and different schemes satisfy some but not others. In general, we think of a security
definition as having a threat model (what can the adversary see or do) and an adversarial goal (what is the
adversary trying to do).

A few remarks about encryption:

(i) The definition of an encryption scheme implicitly assumes that the encryptor and decryptor hold the
same key, but the adversary doesn’t. In practice, key exchange, the process by which two parties
(secretly) agree on a key, is a crucial and non-trivial step that must precede the use of any (symmetric)
encryption scheme. If our threat model assumes that Eve can listen into the wire, how/why could she
not know the secret key? This sounds like a ”chicken-or-the-egg problem”: we need to share a key in
order to to communicate secretly, but we need to communicate secretly to share a key! We will see
later in class how this can be done, using beautiful mathematics.

(ii) We assume that the adversary knows everything about the system (including M and K), except the
secret key (Kerchoff’s Principle). For example, the adversary knows the explicit algorithms being used
(and their inner workings/implementations).

2 6.857 : Recitation 3: Recap

1.1 Security

On Wednesday, Prof. Kalai introduce the first security definition (of many we will see this semester): (one-
time) perfect security. Intuitively, this means that an all-powerful adversary (unbounded runtime and space
complexity) that receives a single ciphertext does not learn anything about the underlying message. In other
words, we want all ciphertexts to be completely independent of the messages.

Definition 1.2. An encryption scheme (Gen,Enc,Dec) is perfectly secret if for all m1,m2 ∈ M and every
c ∈ C it holds that

Enc(k,m) ≡ Enc(k,m′) (2)

Where the probabilities are over the random sampling of the key k, and potentially the randomness of
Enc (albeit it could be determinstic). Note that this formula holds even if the adversary knows m0 or m1, and
our only assumption is that she doesn’t know the key. We can rephrase this by saying that (m0,Enc(k,m0))
is indistinguishable from (m0,Enc(k,m1)).

This formula may be a bit unintuitive to understand at first. However, we can rephrase it in a game-based
manner (games are an important part of security definitions, so you should become familiar with them). We
will consider a game between the (all-powerful) adversary A, and a challenger C, who holds a secret key k.
A and C will then play as follows:

1. A chooses two messages m0 and m1 from M, and sends them to C.

2. C flips a coin to choose a bit b ∈ 0, 1 (for example, if it lands on heads pick 0, and if lands on tails pick
1). Based on this, C computes c := Enc(k,mb). That is, C randomly chooses one of A’s messages, and
sends her the encryption of it.

3. A, upon receiving c, will try to guess which of her two messages is the one encrypted. Finally, A
outputs her guess b′. If b′ = b, i.e., she guessed the message correctly, A wins. Otherwise, C wins.

We say that a scheme is perfectly indistinguishable if and only if, for every possible adversary A, the proba-
bility that A wins this game is 1

2 . That is, A has no better strategy than just guessing the bit at random!
As mentioned earlier, this is completely analogous to (2), and is just a way to rephrase the equation.

Again, intuitively, what perfect secrecy tells us is that seeing a ciphertext does not reveal anything about
the message. We can write this sentence in the form of an equation: ∀m ∈ M, c ∈ C s.t. Pr[C = c] > 0 it
holds that

Pr[M = m|C = c] = Pr[M = m] (3)

Here, M and C are random variables denoting the message being encrypted and the resulting ciphertext,
respectively (recall that we have probability distributions over M and C).

So, seeing a ciphertext does not tell Eve anything that she didn’t know already. What is the relationship
between (2) and (3)? Are there schemes that satisfy one definition but not the other? No!

Claim. An encryption scheme is perfectly secure if and only if it satisfies (3). That is, (2) and (3) are
equivalent.

We now have two formulas that can be used interchangeably! When trying to prove the security of a
scheme, either one is sufficient. In summary, we saw three analogous formulations of information-theoretic
security: perfect secrecy (eq. (2)), perfect indistinguishability (game-based analogue of the former), and
eq. (3).

Recitation 3: Recap 3

1.2 One-Time Pad

In class we also saw the canonical example of a perfectly-secure scheme: the one-time pad (OTP). Loosely,
recall that we encrypt a message m with a key k by computing k ⊕ m, and we decrypt a ciphertext c by
computing k⊕ c. Correctness is easy to see: Dec(k,Enc(k,m)) := k⊕ (m⊕ k) = m⊕ (k⊕ k) = m, as desired
(x-or is commutative and associative).

In class, we showed how the one-time pad satisfies eq. (2). Since eq. (2) is equivalent to eq. (3), we will
verify that OTP also satisfies eq. (3).

Theorem 1.1. The OTP is perfectly secret.

Proof. We will show that OTP satisfies eq. (3), i.e., Pr[M = m|C = c] = Pr[M = m] for any m, c ∈ {0, 1}n.

By Bayes’ Theorem, Pr[M = m|C = c] = Pr[C=c|M=m]·Pr[M=m]
Pr[C=c] . Let’s compute each part individually:

First, note the following: Pr[C = c|M = m] = Pr[Enc(k,m) = c] = Pr[k ⊕m = c] = Pr[k = c⊕m] = 1
2n .

The last equality is true because k was chosen uniformly at random from {0, 1}n.

Now we need to compute Pr[C = c]. By the law of total probability, Pr[C = c] =
∑

m′∈M(Pr[C =
c|M = m′] ·Pr[M = m′]). From above, we know Pr[C = c|M = m′] = 1

2n for all messsages, so we can factor
this out to get Pr[C = c] = 1

2n

∑
m′∈M Pr[M = m′]. Since the second term is just a sum over all possible

values of the random variable, it must be equal to 1. Thus, Pr[C = c] = 1
2n .

Putting it all together:

Pr[M = m|C = c] =
Pr[C = c|M = m] · Pr[M = m]

Pr[C = c]
=

1
2n · Pr[M = m]

1
2n

= Pr[M = m]

as desired.

The intuition behind this proof (and OTP in general), is that for every ciphertext and every message, I
can find a pad that “proves” that this message was the plaintext. So, the adversary has no way to tell which
message is actually the encrypted one.

Even though OTP is perfectly secure it has some important limitations!

Key Reuse. The one-time pad suffers from a big problem: it is one-time secure. Namely, the formulas
for perfect secrecy hold for one (and only one) message. As soon as a second message is encrypted with the
same key, security breaks apart: an avdersary can compute c1 ⊕ c2 = (k ⊕m1) ⊕ (k ⊕m2) = m1 ⊕m2. Is
this a problem? Yes! We learn information about the messages (for example, we can take any two messages
whose x-or is not equal to the above, and know that these two can not be the encrypted messages). This is a
problem in practice, and we can use statistical techniques to efficiently find the entire messages (for instance,
if the messages are English words, we can exploit letter patterns and frequency). Further, if the messages
are a single bit, we can learn if they are the same bit or not.

In general, later in the class we will see that an encryption scheme that is many-time secure must be
randomized. Intuitively, note that for a many-time perfectly secure scheme, (Enc(k,m1),Enc(k,m1)) and
(Enc(k,m1),Enc(k,m2)) must be indistinguishable, for any m1,m2 ∈ M. However, if Enc is deterministic,
these are evidently different: the former contains two copies of a bit-string, and the latter (with high prob-
ability) two different bit strings.

4 6.857 : Recitation 3: Recap

The condition above (nondeterminism) is necessary but not sufficient for many-time perfect security. As
a matter of fact, no set of conditions are sufficient: many-time perfect security is impossible! Namely, if the
adversary has various ciphertexts encrypted with the same key, she can enumerate over all keys, and find
the key which properly decrypts all ciphertexts. If she has enough of these, with high probability, she has
found the correct key.

Key Length. It is easy to see that the OTP requires the key to be as long as the message: if |m| > |k|,
then k⊕m reveals the higher order |m| − |k| bits of m! So, if our message is very long, requiring such a long
key is not practical.

Sadly, a more general problem is true for any perfectly secure scheme.

Claim. For any perfectly secure scheme, |K| ≥ |M|

Proof. At a high-level, the idea is that, for any ciphertext and any message, there must exist some key
that could be used to encrypt the message and get the ciphertext. If the message space is larger than the key
space, by exhaustion, there will be some messsage(s) with no associated key. So, an all-powerful adversary
can trivially break the security: try all message-key pairs, and eventually will stumble upon a message m
for which no key yields the ciphertext. So, she has learned something about the ciphertext: it can’t be the
encryption of m.

More formally, we prove this by contradiction, i.e., assume |M| > |K|. Let c be an arbitrary ciphertext
in C, and let S be the set of all messages for which there exists a key that decrypts c to them. In ”Pythonic”
syntax: S = {Dec(k, c) for k ∈ K}. Note that |S| ≤ |K|, since there is at most one message per key (Dec
is deterministic, so no key-ciphertext pair can output more than one message). By assumption, there must
be some message m not in S: |S| ≤ |K| < |M|. I.e., Pr[M = m|C = c] = 0. Recall, however, that perfect
secrecy requires Pr[M = m|C = c] = Pr[M = m]! We thus reach a contradiction.

Note that, for OTP, the condition that |k| > |m| implies that |K| > |M|, as the lemma above claims.
I.e., the claim is a generalization of OTP’s problem.

1.3 Many-Time Security

We just saw that the one-time pad is not many time secure. What does many-time security even mean?

Definition 1.3. An encryption scheme (Gen,Enc,Dec) is many-time secure if for all m1, ...,mt,m
′
1, ...,m

′
t ∈

M (where |mi| = |m′i|) it holds that

(Enc(k,m1), ...,Enc(k,mt)) ≡ (Enc(k,m′1), ...,Enc(k,m
′
t)) (4)

The randomness is again over the random sampling of the key k, and the randomness of Enc.

Just like in one-time security, we can rephrase this in the form of a game, analogous to the prior one,
except that in step 1 the adversary sends all of m1, ...,mt,m

′
1, ...,m

′
t to the challenger, who encrypts either

all of m1, ...,mt or m
′
1, ...,m

′
t in step 2.

As mentioned earlier, note that a many-time secure encryption scheme must be probabilistic. Otherwise,
it would be very easy to distinguish between the encryptions of (m,m) and (m,m′), since the former would
produce to equal ciphertexts and the former two distinct ones, so the adversary can easily tell which pair of
ciphertexts got encrypted.

Recall from lecture that there are no many-time secure schemes if the adversary is all powerful! So, we
relax our threat model, and assume A is polynomially bounded (“efficient”).

Recitation 3: Recap 5

Going back to the security game, we can strengthen the threat model even more, to get what we call
CPA security :

1. The adversary picks any message m and sends this to the challenger. The challenger computes c :=
Enc(k,m) and sends this back to the adversary.

2. Repeat step 1 as many times as the adversary wants, with any messages.

3. Eventually, A chooses two messages m0 and m1 from M, and sends them to C.

4. C flips a coin to choose a bit b ∈ 0, 1 (for example, if it lands on heads pick 0, and if lands on tails pick
1). Based on this, C computes c := Enc(k,mb). That is, C randomly chooses one of A’s messages, and
sends her the encryption of it.

5. A, upon receiving c, will try to guess which of her two messages is the one encrypted. Finally, A
outputs her guess b′. If b′ = b, i.e., she guessed the message correctly, A wins. Otherwise, C wins.

We think of steps 1 and 2 in the game as giving the adversary access to an “encryption oracle”. Also, we
think of steps 3 and 4 as the “challenge phase”. We say that the scheme is CPA secure if the adversary wins
this game with probability 1

2 + negl.

CPA security is one of the “gold standards” for non-authenticated security. One important question
is how realistic is CPA security? What do the encryption oracles even represent? What is the point of
distinguishing two messages?

The idea behind the encryption oracle is that, in practice, the adversary may influence the behavior of the
communicating parties, and have some impact on what gets encrypted (the Wikipedia article for “Chosen-
plaintext” attack has some real world examples). So, the “extreme” version of influencing what parties
encrypt is to decide the entire message that they encrypt, which is precisely what the encryption oracle allows!
As for distinguishing between two chosen messages, this is strictly easier than finding information about a
random (unknown) message that gets encrypted (which may be what we intuitively ask of an encryption
scheme). So, CPA security basically takes a very strong threat model and a very weak adversarial goal. If
a scheme is secure in this “overkill” setting, then it most definitely will be secure in practice, where the
adversary has less power but is trying to achieve an even more complex goal.

2 Authentication

Even though CPA security is quite strong in terms of secrecy guarantees, it says nothing about integrity! That
is, it says nothing about an adversaries ability to malleate messages or send messages on the sender’s behalf.
What we need is, basically, CPA security + authentication, which we formalize in terms of CCA security.
This new variant of security is exactly like the CPA security game, but with one important difference: the
adversary now has access to a decryption oracle. That is, in addition to being able to get encryptions for
arbitrary messages, the adversary can now request the decryption of arbitrary ciphertexts. So, in a sense,
the decryption oracle captures the adversary’s ability to craft messages that decrypt to something useful (by,
say, impersonating the sender).

2.1 Message Authentication Codes

The basic primitive that we use to get integrity (and, thus, CCA security) is called a message authentication
code (MAC):

Definition 2.1. Amessage authentication code (MAC) is a triplet of PPT algorithms Π = (Gen,MAC,Verify)
such that:

6 6.857 : Recitation 3: Recap

• Gen(1n) : outputs a secret key k.

• MAC(k,m) : outputs a tag t for the message m

• Verify(k,m, t) : outputs 1 if t is a valid tag for m, and 0 otherwise.

Note that, generally, the MAC algorithm is deterministic, in which case the verification algorithm consists
of recomputing the tag on m (using the MAC algorithm), and verifying that this matches the claimed t.

Intuitively, we want the MAC to be such that an adversary can’t compute tags for new messages, i.e.,
the adversary cannot pretend to be the sender and cannot manipulate the messages from the sender. We
encapsulate this in the security definition of a MAC:

Definition 2.2. A MAC scheme (Gen,MAC,Verify) is secure against chosen-message attacks if any efficient
adversary, with access to a tagging oracle that outputs tags for any messages of the adversaries choosing,
cannot (i.e., with negligible probability) generate a valid tag for a new message (i.e., not sent to the tagging
oracle).

We can, once again, think of this definition in terms of a game:

1. The adversary picks a message m and sends this to the challenger. The challenger computes t :=
MAC(k,m) and sends this back to the adversary.

2. Repeat step 1 as many times as the adversary wants, with any messages.

3. Eventually, the adversary must output a message-tag pair (m′, t′) (wherem was not one of the messages
sent in steps 1 and 2). If Verify(k,m′, t′) = 1, the adversary wins the game. Otherwise, C wins.

Like in CPA security, the intuition of this security definition is that an adversary may influence the
messages that get sent (and thus, tagged), so we consider the strongest version of this threat model (an
adversary that can decide the messages that get sent).

Two important notes: (1) a MAC provides no protection against replay attacks. So, a secure MAC is
indeed vulnerable to this type of attack. Replay attacks are not a goal of a MAC, and we fix this in practice
by using, e.g., a counter or timestamps; (2) a MAC provides no secrecy guarantees. That is, a MAC is only
concerned about integrity, and says nothing about an adversaries ability to learn the underlying message.
Hence, when used as part of a larger system, we generally want to use the MAC alongside an encryption
scheme, to achieve both secrecy and integrity. We thus reach a simple but important theorem:

Theorem 2.1. Combining a CPA-secure encryption scheme and MAC scheme that’s secure against chosen-
message attacks yields a CCA secure encryption scheme.

Note that the order in which we combine the encryption scheme and MAC is crucial, and we must use
the encrypt-then-mac approach: we first encrypt the message, then compute a tag (using a different key!)
on this ciphertext, and send the ciphertext and the tag together. To decrypt, we first check that the tag is
valid for that ciphertext (otherwise, return the “invalid” symbol ⊥), and then we decrypt the ciphertext.

Proof. We will provide a sketch of the proof for the theorem. The high-level idea is that the secure MAC
makes the decryption oracle useless, i.e., only the encryption oracle is useful, so the security of the scheme
reduces to CPA security. Since the decryption oracle returns ⊥ when the tag is invalid, the oracle is only
useful if the inputs to it contain valid tags. The only way for the adversary to get valid tags is via the
encryption oracle (which returns items of the form c|t, where t is a tag for c). By the security of the MAC,
just seeing these t that are returned from the encryption oracle does not allow an adversary to generate a
new tag t′ for a new ciphertext, however. So, the adversary is limited to only using the decryption oracle
with tags that she got from the encryption oracle (and, thus, ciphertexts that she got from the encryption

Recitation 3: Recap 7

oracle)! Clearly, this is not useful to the adversary, as she already knows which messages the decryption
oracle will return for these ciphertexts (since she fed the messsages to the encryption oracle to begin with).
So, the decryption oracle provides no new information, and the only possible attack vector is the encryption
oracle, which boils down to the CPA security of the scheme.

As a technical note: CCA security is a secrecy notion, and it doesn’t say anything about integrity per
se / directly. That is, in the security game, the adversay’s only goal is to figure out which message got
encrypted. However, we use CCA security as a proxy for integrity too, since all natural schemes that are
CCA secure also provide integrity (since, e.g., they may make the decryption oracle useless). However, there
are indeed CCA secure encryption schemes that are malleable! These are very contrived examples, however,
and all common/natural/practical CCA secure schemes are unforgeable, so we think of CCA security as
secrecy+integrity.

