Fully Homomorphic Encryption and

Post Quantum Cryptography

$$
6.857
$$

Post Quantum Cryptography

Factoring, RSA, Discrete Log, Elliptic Curves...

Is Crypto Going to Die??

- There is a family of assumptions that are believed to resist quantum attacks.
- We know how to build crypto-systems from these assumptions.

Today

1. Define Learning with Error (LWE) assumption, which is believed to be post-quantum secure
2. Fully Homomorphic Encryption (FHE)

- Definition
- Application
- Construction from LWE

Learning with Error (LWE) [Regev 2004]

LWE assumption: It is hard to solve random noisy linear equations

Note: It is easy to solve linear equations without noise (Gaussian Elimination)

Learning with Error (LWE) [Regev 2004]

Formally: LWE is associated with parameters

$$
(q, n, m, \chi)
$$

$q=$ field size (prime)
Decisional version
$n=\#$ variables
$m=$ \# equations ($m \gg n$)
$\chi=$ error distribution
$\boldsymbol{L} \boldsymbol{W} \boldsymbol{E}_{\boldsymbol{q}, \boldsymbol{n}, \boldsymbol{m}, \chi}:$ For random $s \leftarrow Z_{q}^{n}$, random $A \leftarrow Z_{q}^{n \times m}$, and $e \leftarrow \chi^{m}$,

$$
(A, s A+e) \approx(A, U)
$$

$\boldsymbol{L} \boldsymbol{W} \boldsymbol{E}_{\boldsymbol{q}, \boldsymbol{n}, \boldsymbol{m}, \chi}:$ For random $s \leftarrow Z_{q}^{n}$, random $A \leftarrow Z_{q}^{n \times m}$, and $e \leftarrow \chi^{m}$,

$$
(A, s A+e) \approx(A, U)
$$

1. Believed to resist quantum attacks.
2. No known sub-exponential algorithms.
3. Reduces to worst-case lattice assumptions
4. Resilient to leakage
5. We can construct amazing cryptographic primitives from it, such as fully homomorphic encryption!

Fully Homomorphic Encryption

- Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$
\begin{aligned}
& \operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x+y) \\
& \operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x \cdot y)
\end{aligned}
$$

Addition and multiplication mod 2 are complete

$$
\operatorname{Enc}(p k, x) \quad \text { easy } \quad \operatorname{Enc}(p k, f(x))
$$

Fully Homomorphic Encryption

- Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$
\begin{aligned}
& \operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x+y) \\
& \operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x \cdot y)
\end{aligned}
$$

- First construction by Gentry 2007 (lattice based).
- First construction under LWE by Brakerski and Vaikuntanathan 2011.
- Today: We will see construction by Gentry-Sahai-Waters 2013

Fully Homomorphic Encryption

- Notion suggested by Rivest-Adleman-Dertouzos in 1978:
$\operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x+y)$
$\operatorname{Enc}(p k, x), \operatorname{Enc}(p k, y) \xrightarrow{\text { easy }} \operatorname{Enc}(p k, x \cdot y)$
- Note: RSA and El-Gamal are homomorphic w.r.t. multiplication, but not addition:

RSA: $\quad x^{e} \bmod n, y^{e} \bmod n \xrightarrow{\text { easy }}(x y)^{e} \bmod n$

El-Gamal: $\quad\left(g^{r_{1}}, g^{r_{1} s} \cdot x\right),\left(g^{r_{2}}, g^{r_{2} s} \cdot y\right) \stackrel{\text { easy }}{\longrightarrow}\left(g^{r_{1}+r_{2}}, g^{\left(r_{1}+r_{2}\right) s} \cdot x y\right)$

Applications of FHE: Private Delegation

- Suppose we want to delegate our computation (say to the cloud)
- Suppose we don't want the cloud to know what the computation is.

Can do private delegation using FHE!

Construction

[Gentry-Sahai-Waters13]

$$
\begin{array}{rl}
\operatorname{Gen}\left(\mathbf{1}^{n}\right): A \leftarrow Z_{q}^{(n-1) \times m} \\
S \leftarrow Z_{q}^{n-1} \\
\mathrm{e} \leftarrow \chi^{m} & P K=B=\binom{A=\theta(n \log q)}{s A+e} \in Z_{q}^{n \times m} \\
& S K=t=(-s, 1) \in Z_{q}^{n} \quad t B \approx 0
\end{array}
$$

$\operatorname{Enc}(\boldsymbol{P K}, \boldsymbol{b})$: Choose at random $\mathrm{R} \leftarrow\{0,1\}^{m \times N}$, output

$$
\mathbf{C T}=\boldsymbol{B R}+b G \in Z_{q}^{n \times N},
$$

where $G \in Z_{q}^{m \times N}$ is a fixed matrix

Construction

[Gentry-Sahai-Waters13]

$\operatorname{Enc}(\boldsymbol{P K}, \boldsymbol{b})$: Choose at random $\mathrm{R} \leftarrow\{0,1\}^{m \times N}$, output

$$
\mathbf{C T}=B R+b G \in Z_{q}^{n \times N},
$$

where $G \in Z_{q}^{m \times N}$ is a fixed matrix
$\operatorname{Dec}(S K, C T)$: Compute $t \cdot C T$, and output 0 iff $t \cdot C T \approx 0$.

Correctness: \boldsymbol{R} is small, and $\boldsymbol{t} \cdot \boldsymbol{G}$ is large, hence:

$$
t \cdot C T=t \cdot B R+b t G \approx 0+b t G .
$$

Construction

[Gentry-Sahai-Waters13]

$$
\begin{aligned}
&\left.\operatorname{Gen}\left(\mathbb{1}^{n}\right): \begin{array}{ll}
A & \leftarrow Z_{q}^{(n-1) \times m} \\
s & P K=B=\left(\begin{array}{c}
m=\theta(n \log q) \\
n-1
\end{array}\right. \\
\mathrm{e} \leftarrow \chi^{m} & \\
s A+e
\end{array}\right) \in Z_{q}^{n \times m} \\
& S K=t=(-s, 1) \in Z_{q}^{n} \quad t B \approx 0
\end{aligned}
$$

$\operatorname{Enc}(\boldsymbol{P K}, \boldsymbol{b})$: Choose at random $\mathrm{R} \leftarrow\{0,1\}^{m \times N}$, output

$$
\mathbf{C T}=B R+b G \in Z_{q}^{n \times N},
$$

where $G \in Z_{q}^{m \times N}$ is a fixed matrix

$$
N=n(\log q+1)
$$

Security: If B was random in $Z_{q}^{n \times m}$ then $(B, B R) \equiv(B, U)$
(by the Leftover Hash Lemma, follows from the fact that $m>n \log q$).
By LWE, $(B, B R) \approx(B, U)$

Computing on Encrypted Data

$\operatorname{Enc}(\boldsymbol{P K}, \boldsymbol{b})$: Choose at random $\mathrm{R} \leftarrow\{0,1\}^{m \times N}$, output

$$
\mathbf{C T}=B R+b G \in Z_{q}^{n \times N},
$$

where $G \in Z_{q}^{m \times N}$ is a fixed matrix

$$
\begin{aligned}
& \text { easy } \\
& B R_{1}+b_{1} G \quad \text { easy } \boldsymbol{G}^{+} \boldsymbol{C T}^{+}=C T_{1}+C T_{2}=B\left(R_{1}+R_{2}\right)+\left(b_{1}+b_{2}\right) G \\
& G^{\mathbf{1}}: \mathbb{Z}_{q}^{n \times N} \rightarrow\{0,1\}^{N \times N} \text { is bit } \\
& \text { decomposition function: } \\
& \forall \mathrm{M} \in \mathbb{Z}_{q}^{n \times N} \quad G \boldsymbol{G}^{-1}(M)=M \text {. } \\
& \text { in }\{0,1\}^{N \times N} \\
& \text { mod q, we } \\
& \text { want mod } 2 \\
& C T_{1}, C T_{2} \stackrel{\text { easy }}{\longrightarrow} C T^{\times}=C T_{1} \cdot G^{-1}\left(C T_{2}\right)=\left(B R_{1}+b_{1} G\right) \cdot G^{-1}\left(C T_{2}\right) \\
& =B R^{\prime}+b_{1} \cdot C T_{2}=B\left(R^{\prime}+b_{1} R_{2}\right)+b_{1} b_{2} G=B R^{\prime \prime}+b_{1} b_{2} G
\end{aligned}
$$

Can get addition mod 2 by computing $C T^{+}-2 C T^{\times}$

The Error Grows!

