## Fully Homomorphic Encryption and Post Quantum Cryptography

6.857

### Post Quantum Cryptography

All the assumptions that we have seen so far for public key cryptography are broken using quantum computers

Factoring, RSA, Discrete Log, Elliptic Curves...

### Is Crypto Going to Die??

- There is a family of assumptions that are believed to **resist quantum attacks**.
- We know how to **build crypto-systems** from these assumptions.

### Today

1. Define Learning with Error (LWE) assumption, which is believed to be post-quantum secure

- **2. Fully Homomorphic Encryption (FHE)** 
  - Definition
  - Application
  - Construction from LWE

### Learning with Error (LWE) [Regev 2004]

# LWE assumption: It is hard to solve random noisy linear equations

Note: It is easy to solve linear equations without noise (Gaussian Elimination)

### Learning with Error (LWE) [Regev 2004]

# Formally: LWE is associated with parameters $(q, n, m, \chi)$

q =field size (prime)

Decisional version  $\begin{array}{l} n = \# \text{ variables} \\ m = \# \text{ equations } (m \gg n) \\ \chi = \text{error distribution} \\ \\ LWE_{q,n,m,\chi}: \text{ For random } s \leftarrow Z_q^n, \text{ random } A \leftarrow Z_q^{n \times m}, \text{ and } e \leftarrow \chi^m, \\ (A, sA + e) \approx (A, U) \end{array}$  *LWE*<sub>*q*,*n*,*m*, $\chi$ </sub>: For random  $s \leftarrow Z_q^n$ , random  $A \leftarrow Z_q^{n \times m}$ , and  $e \leftarrow \chi^m$ , (*A*, *sA* + *e*)  $\approx$  (*A*, *U*)

- 1. Believed to resist quantum attacks.
- 2. No known sub-exponential algorithms.
- 3. Reduces to worst-case lattice assumptions
- 4. Resilient to leakage
- 5. We can construct amazing cryptographic primitives from it, such as **fully homomorphic encryption**!

## **Fully Homomorphic Encryption**

• Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x + y)$$

$$Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x \cdot y)$$

$$Addition and multiplication mod 2 are complete$$

$$Enc(pk, x) \xrightarrow{easy} Enc(pk, f(x))$$

## **Fully Homomorphic Encryption**

• Notion suggested by Rivest-Adleman-Dertouzos in 1978:

 $Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x + y)$  $Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x \cdot y)$ 

- First construction by Gentry 2007 (lattice based).
- First construction under LWE by Brakerski and Vaikuntanathan 2011.
- Today: We will see construction by Gentry-Sahai-Waters 2013

## **Fully Homomorphic Encryption**

• Notion suggested by Rivest-Adleman-Dertouzos in 1978:

$$Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x + y)$$
$$Enc(pk, x), Enc(pk, y) \xrightarrow{easy} Enc(pk, x \cdot y)$$

• Note: RSA and El-Gamal are homomorphic w.r.t. **multiplication**, but not addition:

**RSA:** 
$$x^e \mod n, y^e \mod n$$
  $\xrightarrow{\text{easy}}$   $(xy)^e \mod n$   
**Gamal:**  $(g^{r_1}, g^{r_1s} \cdot x), (g^{r_2}, g^{r_2s} \cdot y)$   $\xrightarrow{\text{easy}}$   $(g^{r_1+r_2}, g^{(r_1+r_2)s} \cdot xy)$ 

FI-

### Applications of FHE: Private Delegation

- Suppose we want to delegate our computation (say to the cloud)
- Suppose we don't want the cloud to know what the computation is.



Can do private delegation using FHE!

#### Construction

#### [Gentry-Sahai-Waters13]





#### Construction

#### [Gentry-Sahai-Waters13]



**Enc**(**PK**, **b**): Choose at random  $\mathbb{R} \leftarrow \{0,1\}^{m \times N}$ , output  $\mathbf{CT} = BR + bG \in \mathbb{Z}_q^{m \times N}$ , where  $G \in \mathbb{Z}_q^{m \times N}$  is a fixed matrix

**Dec**(SK, CT): Compute  $t \cdot CT$ , and output 0 iff  $t \cdot CT \approx 0$ .

**Correctness:** *R* is small, and  $t \cdot G$  is large, hence:  $t \cdot CT = t \cdot BR + btG \approx 0 + btG$ .

#### Construction

#### [Gentry-Sahai-Waters13]



**Enc**(**PK**, **b**): Choose at random  $\mathbb{R} \leftarrow \{0,1\}^{m \times N}$ , output  $\mathbf{CT} = BR + bG \in \mathbb{Z}_q^{m \times N}$ , where  $G \in \mathbb{Z}_q^{m \times N}$  is a fixed matrix

Security: If *B* was random in  $Z_q^{n \times m}$  then  $(B, BR) \equiv (B, U)$ (by the Leftover Hash Lemma, follows from the fact that  $m > n \log q$ ).  $\implies$  By LWE,  $(B, BR) \approx (B, U)$ 

### **Computing on Encrypted Data**





### The Error Grows!







