
6.857

Fully Homomorphic Encryption 
and 

Post Quantum Cryptography



Post Quantum Cryptography

All the assumptions that we 
have seen so far for public 

key cryptography are 
broken using quantum 

computers 

Factoring, RSA, Discrete Log, Elliptic Curves…



Is Crypto Going to Die??

• There is a family of assumptions that are believed to 
resist quantum attacks.

• We know how to build crypto-systems from these 
assumptions.

more advanced



Today

1. Define Learning with Error (LWE) assumption, which is 
believed to be post-quantum secure

2. Fully Homomorphic Encryption (FHE)

• Definition
• Application
• Construction from LWE



Learning with Error (LWE)
[Regev 2004]

LWE assumption:  It is hard to solve 
random noisy linear equations

Note:  It is easy to solve linear equations without noise (Gaussian Elimination)



Learning with Error (LWE)
[Regev 2004]

Formally: LWE is associated with parameters 
(𝑞, 𝑛,𝑚, 𝜒)

𝑞 = field size (prime)
𝑛 = # variables
𝑚 = # equations (𝑚 ≫ 𝑛)
𝜒 = error distribution

𝑳𝑾𝑬𝒒,𝒏,𝒎,𝝌: For random 𝑠 ← 𝑍&', random 𝐴 ← 𝑍&'×), and 𝑒 ← 𝜒),

𝑨, 𝒔𝑨 + 𝒆 ≈ (𝑨,𝑼)

Decisional 
version



𝑳𝑾𝑬𝒒,𝒏,𝒎,𝝌: For random 𝑠 ← 𝑍&', random 𝐴 ← 𝑍&'×), and 𝑒 ← 𝜒),

𝑨, 𝒔𝑨 + 𝒆 ≈ (𝑨,𝑼)

1. Believed to resist quantum attacks.

2. No known sub-exponential algorithms.

3. Reduces to worst-case lattice assumptions

4. Resilient to leakage

5. We can construct amazing cryptographic primitives from it, 

such as fully homomorphic encryption!



Fully Homomorphic Encryption

• Notion suggested by Rivest-Adleman-Dertouzos in 1978: 

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 + 𝑦
easy

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 ⋅ 𝑦
easy

Addition and multiplication mod 2 are complete

𝐸𝑛𝑐 𝑝𝑘, 𝑥 𝐸𝑛𝑐(𝑝𝑘, 𝑓 𝑥 )
easy



Fully Homomorphic Encryption

• Notion suggested by Rivest-Adleman-Dertouzos in 1978: 

• First construction by Gentry 2007 (lattice based).

• First construction under LWE by Brakerski and Vaikuntanathan 2011.

• Today: We will see construction by Gentry-Sahai-Waters 2013 

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 + 𝑦
easy

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 ⋅ 𝑦
easy



Fully Homomorphic Encryption

• Note:  RSA and El-Gamal are homomorphic w.r.t. multiplication, 
but not addition:

easy𝑥! 𝑚𝑜𝑑 𝑛, 𝑦! 𝑚𝑜𝑑 𝑛 (𝑥𝑦)! 𝑚𝑜𝑑 𝑛

(𝑔"! , 𝑔"!# ⋅ 𝑥), (𝑔"" , 𝑔""# ⋅ 𝑦)
easy

(𝑔"!$"" , 𝑔("!$"")# ⋅ 𝑥𝑦)

RSA:

El-Gamal:

• Notion suggested by Rivest-Adleman-Dertouzos in 1978: 

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 + 𝑦
easy

𝐸𝑛𝑐 𝑝𝑘, 𝑥 , 𝐸𝑛𝑐 𝑝𝑘, 𝑦 𝐸𝑛𝑐 𝑝𝑘, 𝑥 ⋅ 𝑦
easy



Applications of FHE:
Private Delegation

• Suppose we want to delegate our computation (say to the cloud)

• Suppose we don’t want the cloud to know what the computation is.

Paradox?

Can do private delegation using FHE!



Construction
[Gentry-Sahai-Waters13]

𝑮𝒆𝒏 𝟏𝒏 : 𝐴 ← 𝑍(
)*+ ×-

𝑠 ← 𝑍()*+

e ← 𝜒-

𝐴
𝑠𝐴 + 𝑒

𝑃𝐾 = 𝐵 = ∈ 𝑍&'×)

𝑆𝐾 = 𝑡 = −𝑠, 1 ∈ 𝑍()

𝑬𝒏𝒄 𝑷𝑲, 𝒃 : Choose at random R ← 0,1 -×., output

𝐂𝐓 = 𝑩𝑹 + 𝒃𝑮 ∈ 𝒁𝒒𝒏×𝑵,

where 𝐺 ∈ 𝑍(-×. is a fixed matrix

𝑚 = 𝜃(𝑛 𝑙𝑜𝑔 𝑞)

1 2 4 … 2-./ 0

1 2 4 … 2-./ 0

𝐺 =

𝑁 = 𝑛(log 𝑞 + 1)

𝑡𝐵 ≈ 0

𝒕𝑮 is large



Construction
[Gentry-Sahai-Waters13]

𝑮𝒆𝒏 𝟏𝒏 : 𝐴 ← 𝑍(
)*+ ×-

𝑠 ← 𝑍()*+

e ← 𝜒-

𝐴
𝑠𝐴 + 𝑒

𝑃𝐾 = 𝐵 = ∈ 𝑍&'×)

𝑆𝐾 = 𝑡 = −𝑠, 1 ∈ 𝑍()

𝑬𝒏𝒄 𝑷𝑲, 𝒃 : Choose at random R ← 0,1 -×., output

𝐂𝐓 = 𝑩𝑹 + 𝒃𝑮 ∈ 𝒁𝒒𝒏×𝑵,

where 𝐺 ∈ 𝑍(-×. is a fixed matrix

𝑚 = 𝜃(𝑛 𝑙𝑜𝑔 𝑞)

𝑁 = 𝑛(log 𝑞 + 1)

𝑡𝐵 ≈ 0

Correctness: 𝑹 is small, and 𝒕 ⋅ 𝑮 is large, hence:  
𝑡 ⋅ 𝐶𝑇 = 𝑡 ⋅ 𝐵𝑅 + 𝑏𝑡𝐺 ≈ 0 + 𝑏𝑡𝐺.

𝑫𝒆𝒄 𝑺𝑲, 𝑪𝑻 : Compute 𝑡 ⋅ 𝐶𝑇, and output 0 iff 𝑡 ⋅ 𝐶𝑇 ≈ 0.



Construction
[Gentry-Sahai-Waters13]

𝑮𝒆𝒏 𝟏𝒏 : 𝐴 ← 𝑍(
)*+ ×-

𝑠 ← 𝑍()*+

e ← 𝜒-

𝐴
𝑠𝐴 + 𝑒

𝑃𝐾 = 𝐵 = ∈ 𝑍&'×)

𝑆𝐾 = 𝑡 = −𝑠, 1 ∈ 𝑍()

𝑬𝒏𝒄 𝑷𝑲, 𝒃 : Choose at random R ← 0,1 -×., output

𝐂𝐓 = 𝑩𝑹 + 𝒃𝑮 ∈ 𝒁𝒒𝒏×𝑵,

where 𝐺 ∈ 𝑍(-×. is a fixed matrix

𝑚 = 𝜃(𝑛 𝑙𝑜𝑔 𝑞)

𝑁 = 𝑛(log 𝑞 + 1)

𝑡𝐵 ≈ 0

Security: If 𝐵 was random in 𝑍()×- then B, 𝐵𝑅 ≡ 𝐵,𝑈
(by the Leftover Hash Lemma, follows from the fact that 𝑚 > 𝑛 log 𝑞).

By LWE, 𝐵, 𝐵𝑅 ≈ (𝐵, 𝑈)



Computing on Encrypted Data

𝑬𝒏𝒄 𝑷𝑲, 𝒃 : Choose at random R ← 0,1 -×., output

𝐂𝐓 = 𝑩𝑹 + 𝒃𝑮 ∈ 𝒁𝒒𝒏×𝑵,

where 𝐺 ∈ 𝑍(-×. is a fixed matrix
𝑁 = 𝑛(log 𝑞 + 1)

𝐵𝑅! + 𝑏!𝐺, 𝐵𝑅" + 𝑏"𝐺
easy

𝐶𝑇!, 𝐶𝑇"
easy

𝑪𝑻× = 𝐶𝑇! ⋅ 𝐺$! 𝐶𝑇" = 𝐵𝑅! + 𝑏!𝐺 ⋅ 𝐺$! 𝐶𝑇"
= 𝐵𝑅% + 𝑏! ⋅ 𝐶𝑇" = 𝐵(𝑅%+𝑏!𝑅") + 𝑏!𝑏"𝐺 = 𝐵𝑅′′ + 𝑏!𝑏"𝐺

𝐶𝑇! 𝐶𝑇"

𝑪𝑻& = 𝐶𝑇! + 𝐶𝑇" = 𝐵(𝑅!+𝑅") + (𝑏!+𝑏")𝐺

mod q, we 
want mod 2

Can get addition mod 2 by computing 𝐶𝑇& − 2𝐶𝑇×

𝑮$𝟏: 𝒁𝒒𝒏×𝑵 → 𝟎, 𝟏 𝑵×𝑵 is bit 
decomposition function:
∀𝐌 ∈ 𝒁𝒒𝒏×𝑵 𝑮𝑮$𝟏 𝑴 = 𝑴. in 0,1 +×+



The Error Grows!

𝐵𝑅! + 𝑏!𝐺, 𝐵𝑅" + 𝑏"𝐺
easy

𝐶𝑇! 𝐶𝑇"

𝐶𝑇& = 𝐶𝑇! + 𝐶𝑇" = 𝐵(𝑅!+𝑅") + (𝑏!+𝑏")𝐺

Bootstrap to reduce 
the noise!

𝐶𝑇!, 𝐶𝑇"
easy

𝐶𝑇× = 𝐶𝑇! ⋅ 𝐺$! 𝐶𝑇" = 𝐵𝑅! + 𝑏!𝐺 ⋅ 𝐺$! 𝐶𝑇"
= 𝐵𝑅% + 𝑏! ⋅ 𝐶𝑇" = 𝐵(𝑅%+𝑏!𝑅") + 𝑏!𝑏"𝐺 = 𝐵𝑅′′ + 𝑏!𝑏"𝐺




