The Evolution of Proofs in Computer Science:

Zero-Knowledge Proofs

6.857

Zero-Knowledge Proofs [Goldwasser-Micali-Rackoff85]

Proofs that reveal no information beyond the validity of the statement

Zero-Knowledge Proofs [Goldwasser-Micali-Rackoff85]

Impossible!

Interactive Proofs [Goldwasser-Micali-Rackoff85]

Completeness: $\forall x \in L \ \Pr[(P, V)(x) = 1] \ge 2/3$

Soundness: $\forall x \notin L, \forall P^* \Pr[(P^*, V)(x) = 1] \le 1/3$

Note: By repetition, we can get completeness $1 - 2^{-k}$, and soundness 2^{-k}

Interactive Proofs

[Goldreich-Micali-Wigderson87]: Every statement that has a classical proof has zero-knowledge (ZK) interactive proof, assuming one-way functions exist

Defining Zero-Knowledge

Formally: There exists a *PPT* algorithm *S* (called a simulator), such that for every $x \in L$:

 $S(x) \approx (P, V)(x)$ Denotes the transcript

ZK Proofs for NP

Vertices can be colored by {1,2,3} s.t. no two adjacent vertices are colored by the same color

For the NP-complete language of all 3-colorable graphs

Soundness: Only $1 - \frac{1}{|E|}$ but can be amplified via repetition.

ZK Proofs for NP

For the *NP*-complete language of all 3-colorable graphs

S(V, E):

Implementing Digital Safes: Commitment Scheme

Commitment scheme is a randomized algorithm *Com* s.t.

• Computationally Hiding:

 $\forall m, m' \ Com(m; r) \approx Com(m'; r')$

• Statistically Binding: $\not\exists (m,r), (m',r')$ s.t. $m \neq m'$ and Com(m;r) = Com(m';r')

Constructing a Commitment Scheme

Construction 1:

Let $f: \{0,1\}^* \to \{0,1\}^*$ be an injective **OWF**, and $p: \{0,1\}^* \to \{0,1\}$ be a corresponding **hardcore predicate**.

 $Com(b; r) = (f(r), p(r) \oplus b)$

Binding: Follows from the fact that f is injective

Hiding: Relies on the fact that if *f* is one-way then:

 $(f(r), p(r)) \approx (f(r), U)$

Constructing a Commitment Scheme

Construction 2: computationally hiding, and statistically binding [Pederson]

Let G be a group of prime order p, let $g \in G$ be any generator, and h be a random group element.

 $Com_{g,h}(m,r) = g^m h^r$

Hiding: Information theoretically!

Binding: Follows from the Discrete Log assumption.

Perfect ZK Computationally Sound Proofs

For the *NP*-complete language of all 3-colorable graphs

So Far...

• Constructed ZK proofs for all of NP

using commitment schemes

Constructed commitment schemes

- Based on injective OWF
- Based on Discrete Log

Interactive Proofs are more efficient!

Classical Proofs

Classical Proofs

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

Example: Chess

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

 \approx

Space required to do the Interactive computation

IP = PSPACE

Proof

Interactive Proofs are More Efficient! [Lund-Fortnow-Karloff-Nissan90, Shamir90]

correctness of any computation can be proved:

Time to verify

 \approx

Space required to do the computation

Succinct space —> succinct interactive proof

Multi-Prover Interactive Proofs

[BenOr-Goldwasser-Kilian-Wigderson88]

$\forall f \text{ computable in time } T$:

2-provers can convince verifier that f(x) = y, where the **runtime** of the **verifier** is only $|x| \cdot polylog(T)$ and the **communication** is polylog(T)

[Fortnow-Rompel-Sipser88]:

Probabilistically Checkable Proofs

[Feige-Goldwasser-Lovasz-Safra-Szegedy91, Babai-Fortnow-Levin-Szegedy91, Arora-Safra92, Arora-Lund-Mutwani-Sudan-Szegedy92]

