Adams

Quiz (in-class) 4/4 (One page of notes)

Projects

Today:

Digital Signatures!

- Diffie-Hellman notion of PK signatures
- ACMA (Adaptive Chosen Message Attack) security defn.
- "Textbook" RSA signatures
- Hash & Sign (Full Domain Hash)
- Schnorr ID scheme
- Fiat-Shamir paradigm
- Schnorr signatures
- NIST DSA (Digital Signature Algorithm)
Diffie & Hellman ("New Directions in Cryptography")

- $\text{Gen}(1^k) \rightarrow (PK, SK, M, C)$
 - Ciphertext space
 - Message space
 $|M| = |C|$

- $\text{Enc}(PK, \cdot)$ maps M to C \hspace{2cm} 1 to 1 \hspace{2cm} \text{efficiently computable}$

- $\text{Dec}(SK, \cdot)$ maps C to M \hspace{2cm} 1 to 1

\[m \xrightarrow{\text{Enc}} C \xrightarrow{\text{Dec}} m \]

$\text{Enc} \& \text{Dec}$ are inverse functions (given PK \& SK)

- For signatures, we rename Enc as Verify, Dec as Sign

\[\sigma = \text{Sign}(SK, m) \quad \sigma = \text{Signature on } m \text{ by } SK \]

Verify by checking if $\text{Verify}(PK, \sigma) = m$?

Correctness: $\text{Verify}(PK, \sigma) = m$

\[\text{if } \sigma = \text{Sign}(SK, m) \]

(Security defined in a bit...) \hspace{2cm} SK is trapdoor

Enc \& Dec are trapdoor permutations

(SK is trapdoor)
SK is "signing key"

PK is "signature verification key"

\[\sigma = \text{Sign}(SK, m) \]

\[\text{Verify}(PK, m, \sigma) \in \{\text{true, false}\} \]

(Note: have pulled \(m \) inside as arg to \text{Verify})

Security:

Signature scheme \((\text{Gen}, \text{Sign}, \text{Verify})\) is secure against adaptive chosen message attack

if \((A, \text{PPT} A)\) (Adversary)

\[
\Pr \left[A^{\text{Sign}(SK,m)}(PK) = (m^*, \sigma^*) \text{ such that } \right.

\[\text{Verify}(PK, m^*, \sigma^*) = \text{true} \]

\[\text{and } m^* \text{ was not ever given to } \text{Sign} \]

\[
\leq \text{negl}(\lambda)
\]

i.e. Adversary cannot forge a new message/signature pair, even after having seen signatures for polynomially many messages of his choice.
Textbook RSA signatures:

1. Gen \((1^n) \rightarrow (PK, SK, M, C) \)

 \(PK = (n, e) \)

 \(SK = (n, d) \)

 \(d = e^{-1} \pmod{\phi(n)} \)

2. Sign \((SK, m) \rightarrow \sigma = m^d \pmod{n} \)

3. Verify \((PK, m, \sigma) = \) true if \(\sigma^e = m \pmod{n} \)

This is just basic RSA encryption "turned around"!

This is not secure against ACMA:

- If \(\sigma^e \) is signature for \(m \)

 then \(\sigma^\text{-2} \) is signature for \(m^2 \)

- Worse: \(\sigma \) is signature for \(m = \sigma^e \pmod{n} \)

How to fix?
Hash & Sign (aka Full Domain Hash)

Assume \(H \) is a hash function mapping messages (of arbitrary length) to \(\mathbb{Z}_n \) where \(H \) is modeled as "random oracle".

Idea: Sign \(H(m) \) rather than signing \(m \).

Note: This provides efficiency gains for long messages, as \(H \) is fast.

Claim: This scheme is now secure against ACMA in ROM, under RSA Assumption (hard to compute \(x^d \), given \(n, e, x \mod n \)).

Note: \(\text{Sign}(sk,m) = H(m)^d \mod n \)

\(\text{Verify}(pk,m,\sigma) = \text{true \ if \ } \sigma^e = H(m) \mod n. \)

Proof of claim (sketch):

- Without signing oracle, hard to compute any valid signature, since this requires breaking RSA assumption.

- With signing oracle: Adv can compute transcript of requests to Sign himself, so he learns nothing from Sign. Idea: "program" \(H \). Given \(m \), choose \(\sigma \in \mathbb{Z}_n^* \) compute \(r = \sigma^e \mod n \), program \(H(m) = r \), output \(\sigma \) as signature for \(m \).
If Adv asks for $H(m)$, where m previously unseen, choose random $s \in \mathbb{Z}_n^*$, set $r = s^e \pmod{n}$ return $H(m) = r$.

Schnorr Signature Scheme
- Based on Schnorr Identification Scheme
- Fiat-Shamir paradigm
- Basis for NIST Digital Signature Standard.

Schnorr Identification Scheme
- Prove knowledge of x, for $PK = g^x$
- Group G has prime order
 - g is a generator of G
 - E.g. work $\mod p$, where $p = g \cdot r + 1$ and q_p is prime
 - $G = \{ h^r \mod p, h \in \mathbb{Z}_p^* \}$
 - $|G| = q_p$
 - To find g generator of G, choose $h \in \mathbb{Z}_p^*$,
 - $h \neq 1 \mod p$; let $g = h^r \pmod{p}$.
 - Typically p has 1024 bits (to defeat DL attacks)
 - q_p has 160 bits (to defeat birthday attacks)
User has key pair (g^x, x) for $x \in \mathbb{Z}_q$

Prover P
(knows x)

- $k \leftarrow \mathbb{Z}_q$
- $r = g^k (\text{mod } p)$

Verifier V
(knows g^x)

- $e \leftarrow \mathbb{Z}_q$ ("random challenge")
- $s = k - xe$
- Accept if
 \[g^s = r / \text{PK}^e \]

Note: $g^s = g^{k-xe} = r / (g^x)^e = r / \text{PK}^e$

Claim: Prover "must know" $SK \times x$ if he can answer most challenges

Pf idea: Suppose Prover can answer e_1, e_2

- $g^{s_1}\text{PK}^{e_1} = g^{s_2}\text{PK}^{e_2} = r$
- $(s_1-s_2) / (e_2-e_1)$
- $g = \text{PK}$
- $(s_1-s_2) \times (e_2-e_1)$

Prover "knows" x!
Claim: Verifier gains no information about x. ("Honest" who picks e at random from \(\mathbb{Z}_q\))

Proof idea:
Verifier can generate transcript on his own! (from PK)

\[
\text{transcript} = (PK, r, e, s)
\]

How?
Verifier chooses e at random from \(\mathbb{Z}_q\).

s at random from \(\mathbb{Z}_q\).

computes \(r = g^s \cdot PK^e\)

(called Honest Verifier Zero Knowledge)

How to convert a three-round public coin ID protocol to a digital signature scheme?

\[
\begin{align*}
\text{commit} & \quad \rightarrow \quad r \\
\text{challenge} & \quad \leftarrow \quad e \\
\text{response} & \quad \rightarrow \quad s
\end{align*}
\]

(e is "public coin")

Accept based on PK, r, e, s
Answer: Fiat-Shamir heuristic

\[H \text{ is hash function} \]
\[\text{Let } e = H(m, r) \text{ from ROM} \]
\[\text{Sign}(sk, m) = (r, e, s) \text{ where } e = H(m, r) \]
\[\text{Verify}(pk, m, (r, e, s)) \]
\[\text{Accepts if verifier of ID scheme accepts} \]

Claim: We can use Fiat-Shamir to convert Schnorr ID scheme to a (secure) Schnorr signature scheme. (secure against ACRs)

\[\sigma = (r, e, s) = (g^k, H(m, r), k - x \cdot H(m, r)) \]

Proof ideas:

Seeing signs of other messages is just like seeing attacks on ID protocol - just seeing \(H(m, r) \) instead of verifying \(e \). Zero-knowledge property of ID protocol gives attacker no benefit.

If Adversary can forge, he must be able to supply good response to many possible \(e \)'s (possible \(H(m, r) \) values). This implies he "knows" \(SK \ x. \)
Digital Signature Standard (DSA)

Like Schnorr signature scheme, except:
- \(r \) is computed as \(g^k \pmod{p} \pmod{q} \)
 (for shorter signatures)
- \(e = H(m) \) rather than \(e = H(m, r) \)
 (This version not known to be secure in ROM. (Insecure in Schnorr but not known to be insecure in DSA)).
DSA details

Setup:
- \(g = 160 \text{ bit prime} \)
- \(p = 1024 \text{ bit prime s.t. } g \mid p-1 \)
- \(g = h^{(p-1)/q} \) generates group of order \(q \)

Gen:
- \(SK = x \in \mathbb{Z}_q \)
- \(PK = g^x \in \mathbb{Z}_q^* \)
 \((PK = y \text{ below}) \)

Sign:
- \(k \leftarrow \mathbb{Z}_q^* \) \text{ (must be random & new!)}
- \(r = \left(g^k \mod p \right) \mod q \) \text{ rest artificially fixed if } f = 0
- \(s = \left(H(m) + xk \right) \mod q \) \text{ rest artificially fixed if } s = 0
- \(\sigma = (r, s) \)

Verify \((PK, m, \sigma)\):
- Check that \(0 < r < q \) & \(0 < s < q \)
- \(w = s^{-1} \mod q \)
- \(u_1 = H(m) \cdot w \mod q \)
- \(u_2 = r \cdot w \mod q \)
- \(v = \left(g^{u_1} y^{u_2} \mod p \right) \mod q \)
- Accept if \(v = r \)