
1

6.857 Project Paper
Charles Wang, Philip Tegmark

Abstract—Speedruns are an increasingly common
method of competition where competitors attempt to
complete a video game in the fastest time possible. As with
any competition, cheating is an issue. Here we discuss a
number of speedrun cheating methods, such as splicing,
playing prerecorded inputs, and game code modification,
and propose two countermeasures against some of those
methods. The first countermeasure is a method of verifying
that livestreamed speedruns of 3D games are not spliced.
The second countermeasure is a way to make it harder
to cheat using prerecorded inputs, by recording a player’s
hands during their speedrun. Limitations of both of these
countermeasures are also discussed.

I. INTRODUCTION

Typically, speedruns are verified by the runner—the
player who is doing the speedrun—submitting a screen
capture video of them speedrunning the game in ques-
tion. These videos can be faked and manipulated in a
number of ways, and cheating in speedruns has been
documented across games for more than a decade.

Current methods for determining if a speedrun is
fake are ad hoc, and require specific mistakes to be
made by the forger of the speedrun. There have been
proposals for stricter requirements, such as requiring
inputting randomly generated button inputs during down
time and submitting videos of the recordings of the
player’s hands. These proposals have not been adopted
due to feelings that cheating in speedrunning is not a big
enough issue to justify such invasive measures. However,
as speedrunning grows in popularity, preventing cheating
is becoming a more pressing issue as it gets harder for
the community to self-police.

Achieving a fully computationally secure solution to
preventing speedrunning in cheating is impossible. With-
out any in-person verification, all that a runner can be
asked to supply is video streams. If one permits arbitrary
video editing capabilities, then the runner could always
shim the game controller to output computer generated
controller inputs and then edit any video or audio feeds
so that the recorded behavior of the runner matches the
inputs sent to the game. Therefore, the countermeasures
discussed in this paper will be more limited in scope,
relying on assumptions limiting the capability of the
runner to edit video and reverse-engineer code.

An important consideration when designing counter-
measures to cheats in speedrunning is intrusiveness. A
primary concern expressed by runners is that security
measures will increase the barriers to entry and impact
the amateur nature of the sport. Therefore, any additional
setup on the part of the runner, such as requiring a live
internet connection or requiring the runner to set up a
camera, should be minimized.

Since we were unable to create a system with adequate
security that does not have any such intrusiveness, we
will present an approach that requires no filming but
requires live gameplay and developer support and an
approach that requires filming but does not require
liveness or any special consideration on the part of the
developer.

The former approach is specific to 3D games and
defends against splicing attacks specifically. It works by
having the game re-texture objects upon request in a
way that attests that a livestreamed speedrun of a 3D
game is in fact being played live, and is therefore not
a recording. This is important because if a speedrun is
not a recording, then that speedrun cannot be a spliced
recording, and therefore this approach gives us a way to
certify that a speedrun is free of splicing.

The latter approach consists of requiring the player’s
hands to be filmed and for the player inputs to be
recorded and submitted along with the gameplay video.
The recorded inputs can be compared against the game-
play footage and the video for verification.

We will then discuss under which circumstances these
schemes will be effective and potential attacks on them.

II. FORGERY TACTICS

There are a number of types of methods for forging a
speedrun. Of the following, the most common is splicing,
but the other methods are also common [6].

A. Splicing

Splicing consists of stitching together segments of
recordings of multiple playthroughs of the game to create
a gameplay video of a time that is faster than would be
achievable by the runner otherwise. Splicing allows the
runner to retry sections at will instead of having to have
a good time on every segment of the game all in a single
attempt.



2

B. Tool Assisted Cheating

An legitimate category of competition for determinis-
tic games is the Tool Assisted Speedrun (TAS), where
a sequence of inputs to the game is designed frame by
frame to be played by a machine into the game. These
runs are compared against each other, separately from the
runs by human players. TASes allows for frame perfect
tricks and performing reliably feats that are impossible
for a human runner. A method of cheating is to take a
TAS and attempt to pass it off as a normal run, which
is known as ‘TASbotting’. If the inputs sent to the game
are constructed by stitching toghether inputs recorded
from legitimate runs, this can be nearly impossible to
detect when examining only a recording of the gameplay
footage.

C. Game code modification

Another approach to cheating in a speedrun is to
modify the code of the game. One example would be
to modify the settings of a car so that it drove slightly
faster. If the game is non-deterministic, another approach
would be to alter the random number generation code of
the game so that better events are more likely to happen.

When considering adding code to games for the
purpose of verifying a speedrun, another game mod
consideration is the potential for reverse engineering
and tampering with the verification code. This will be
presumed to be difficult and countering this possibility
will not be considered here.

III. CURRENT DETECTION METHODS

Currently, there are no computational security mea-
sures preventing speedrun forgery. Fakes have been
detected through inspection of videos for mistakes by
the forger, such as jumps in the video or audio and
analyzing the video for consistency with known prop-
erties of the game. A splice was detected by counting
frames of animation lengths and comparing with the
known number frames that the animation lasts. A game
code modification was detected by noting that a specific
car was emitting smoke effects that should not have
happened without game code modification. There was
also a recorded instance of detection of TASbotting by
noting that a player’s hands in a livestream did not
match up with the sent video [6]. Another case of game
code modification was detected by performing statistical
analysis of the recorded gameplay to show that the
probability of the quality of the drops matching that
in the recorded gameplay was less than 10−26 and thus
could have only a negligible probability of having been
achieved legitimately [4].

These detection methods are all community based and
there is no common system for finding cheats. There are
no security measures imposed on the runners other than
submitting a video of gameplay.

IV. MODELING

Here we will be considering the case where there
is a runner seeking to achieve a verified run with the
desired time and the verifier attempting to distinguish
between real and fake runs. When a game is played,
the player is generating a sequence of inputs. The game
inputs could either be the sequence of button presses
for a console game controlled by a game controller or
a sequence of key presses and mouse movements for a
PC game controlled by keyboard and mouse. In each of
these cases, the inputs can be represented by a sequence,
with each element of the sequence corresponding to the
state of the controller at a single frame.

The output of the game is a sequence of video
frames. In the case of a non-livestreamed game, the input
sequence and output sequence can be lumped into single
objects, giving the game as a (possibly deterministic)
function taking the inputs k to the output video G(v).

Another case is that of a livestreamed game. A runner
livestreams a speedrun of a game to an audience via
a streaming service (e.g. Twitch.tv). The livestream has
some known and fixed stream delay D. That is, any-
one in the audience will see the events of the Stream
unfolding an amount of time D after they occur on the
runner’s computer (stream delays are a common practice
in livestreaming done to prevent a the livestream from
buffering). Requests can be sent to the game by the
verifier.

V. DIFFICULTY ASSUMPTIONS

For the case of a splicing attack, we will be consid-
ering the case where the player has access to an large
number of videos of legitimate gameplay and decides to
attempt to forge a speedrun with a faster time using the
aforementioned videos. The 3D live verification system
is designed for a slightly more powerful attacker that is
able to access information in the game’s code but unable
to re-implement sections of the game’s code, such as the
rendering engine in particular.

We will additionally be making assumptions about
the difficulty of editing videos. Due to the fact that
game outputs are an especially regular type of video,
editing such videos are not necessarily always difficult.
For example, consider a 2D game with a low pixel count,
sprites, and no anti-aliasing. Under these conditions,
even without any machine learning, such things as the



3

foreground and background can be perfectly segmented
using simple pattern matching algorithms. Due to this
reason, we will be focusing on three dimensional video
editing problems, such as editing videos of 3D games
and videos of real objects, such as the player’s hands.

In the case of the 3D games, we will be assuming
that it is impossible for the player to segment between
foreground and background and determine the pose of
a random object with sufficient precision to be able to
forge textures within the the delay time D.

In the case of handcams, the assumption is that
creating a forged video of the player’s hands, h, cor-
responding to a sequence of inputs k other than the one
that was played passing inspection. This is not quite
realistic, as it could be possible to state that a key
press occurred a frame or two off of the original video
and successfully pass it off. However it is reasonable
to assume that attempting to play to match a given
sequence of keystrokes to within the fudge factor and
small changes to the keystrokes will not be able to
change the time by enough due to the fact that the later
part of the video is still unchanged.

There are machine learning techniques that may be
able to solve this problem with an accuracy sufficient to
defeat our scheme. More specifically, there are existing
methods for determining the orientation of an object [1]
[5], segmenting foreground from background [3], and
inferring the lighting on a surface [2]. However, it is
reasonable to assume that potential speedrun forgers will
be unable to access the resources and expertise required
to generate a fake in this manner.

VI. 3D LIVE VERIFICATION SYSTEM

A. System Overview

In this section we will deal with how to verify that
a livestreamed speedrun of a 3D game is not a spliced
recording. We define a 3D (3-dimensional) game as a
game in which the in-game world is 3-dimensional, and
most of the objects in the world of the game are able
to rotate and translate in three dimensions relative to the
player’s in-game view. For example, a game like Portal
(see figure 1) is a 3D game because the in-game world
is 3-dimensional; and because as the player character
moves around in the game, or as visible objects move
around in the game, the player will see these visible
objects move and rotate relative to the screen.

Some well-known examples of 3D games are Portal,
Mario Kart, and Dark Souls.

We propose a 3D Live Verification System, which
(provided that our hardness assumption (see below) is
not broken) can verify that a livestreamed speedrun of a

Fig. 1: A screenshot from Portal, an example of a
3D game.

3D game is in fact being played live, and is therefore not
a recording. This is important because if a speedrun is
not a recording, then that speedrun cannot be a spliced
recording.

In order to implement this system, we need to intro-
duce into our model a trusted party called the verifier,
who watches the speedrun as it is livestreamed. Over the
course of the speedrun, the verifier sends a number of
”retexturing requests” to the runner’s copy of the game,
in order to attest the speedrun’s liveness. We also require
that the game being played is built by its developers to
include a ”speedrunning mode” that, when turned on,
allows the game to properly respond to these re-texturing
requests.

In order to verify the speedrun’s liveness, the verifier
sends retexturing requests to the runner’s copy of the
game at random semi-regular intervals (e.g. 5-20 sec
apart). For each retexturing request, the verifier randomly
chooses a time T in the near future, and randomly
chooses a point P on the runner’s game screen. T and
P are then sent to the runner’s copy of the game as
a retexturing request. At time T (as measured by the
runner’s computer’s clock), the runner’s copy of the
game must do the following:

1) Undo the effects of the previous retexturing re-
quest, if there was one. (This is done primarily
for cosmetic reasons—if too many objects are
retextured at once, the game will likely start to
look ugly and/or disorientingly different from how
it usually looks.)

2) Find whatever opaque in-game object O is visible
at point P on the runner’s game screen.

3) Change object O’s texture (the way that the ob-
ject’s surface looks) from its original texture t1 to
a noticeably different texture t2.

For an example of what this might look like in
practice, see Figure 2.



4

Fig. 2: The game screen of a runner playing a 3D game using our system, as the game responds to a
retexturing request sent by the verifier. Point P , although not actually highlighted on the runner’s screen, is
still shown here for clarity. A) The verifier chooses P and T , and sends them to the runner’s game. B) The

runner’s game receives P and T . C) Time T arrives. The game determines onto which object O point P falls
(in this case O is a piece of the wall), and D) The game retextures object O.



5

It is important that the clocks used by the runner’s
computer, the verifier’s computer, and the streaming
service must all be in sync, and no two of these clocks
should differ by more than some pre-determined length
of time δclock (e.g. 1 second). Note that this kind of
synchronization is already implemented in the popular
LiveSplit program. Also, note that retexturing must be
guaranteed to take no longer than some amount of time
δretexture to occur.

If these two assumptions about time hold true, then
the verifier can expect to see the result of their retextur-
ing request sometime in the time interval [(T + D) −
δclock, (T +D) + δclock + δretexture], as measured from
their computer’s clock. If the verifier does in fact see
the correct retexturing occur during this interval (and the
retexturing looks like it’s supposed to), then they can be
presume that the speedrun was in fact happening live
at time T . But if the verifier does not see the correct
retexturing occur during this interval, then they can not
affirm the liveness of the speedrun at time T .

Retexturing requests should occur frequently enough
that at least a sizeable number N (e.g. 20) of them occur
over the course of the speedrun. If for all retexturings,
the verifier sees the correct retexturing occur during the
correct time interval, then they verify that the speedrun
was in fact live and not spliced. But if at least one
retexturing does not happen or does not look correct,
then the verifier will reject the run.

There are also some additional caveats to mention
regarding textures t1 and t2. t1 and t2 should be different
enough that an experienced player (i.e. someone who has
played the game before, and who knows it well enough
to understand more-or-less what is happening in the
speedrun) can always or almost always definitively tell
which of these two textures object O is using. However,
t1 and t2 should also not be too different, otherwise
transitioning between them could be distracting to the
runner.

It is also important that an experienced player can
correctly predict what t2 should be. That is, given a
retexturing request with some on-screen point P and
time T , an experienced player should be able to pause the
speedrun livestream right before the retexturing occurs,
figure out what object O is, and then correctly determine
what texture t2 it will be retextured to.

B. Security Analysis

If the runner was livestreaming a recorded speedrun,
however, they would most likely be unable to include
the requested retexturing in the stream, at which point
the verifier would know that the speedrun was recorded.

This is because, to pass off a recording as a live speedrun
to this system, the runner must include the correct re-
texturings in their recording at the correct times. This
would either need to be done in advance, which we argue
is extremely unlikely to succeed, or would need to be
done in real time, which breaks our hardness assumption.
Therefore, provided that our hardness assumption holds,
a runner livestreaming a video recording would be unable
to comply with retexturing requests, and would fail to
pass our system’s test of liveness.

If the runner wants to try to include the retexturings
in their recording in advance, then for every retexturing
request that the verifier will send, the runner must
correctly guess the object O that gets retextured, and
guess the time T when the retexturing takes place.
They need to guess T closely enough that the veri-
fier still sees the retexturing occurring in the interval
[(T+D)−δclock, (T+D)+δclock+δretexture]. Given that
there will be at least a sizeable number N retexturings,
and that the probability of correctly guessing O and T
is at least moderately unlikely, the probability therefore
that the runner will be able to correctly include all
retexturings in the entire speedrun is negligible. Note that
N can and should be made large enough to guarantee
that the probability of a runner correctly guessing all
re-texturings is negligible.

As for the runner editing their recording in response
to retexturing requests during the livestream, we make
a hardness assumption that this cannot be done. This
hardness assumption is guaranteed if: for at least one
frame in the streamed speedrun video, the runner is not
able to convincingly edit that frame to reflect the most
recent retexturing request within an amount of time T +
D+2∗δclock+δretexture−Tr, where Tr is the time when
the runner’s computer received said retexturing request
(as measured by its clock). If this second assumption
is guaranteed, then at least one frame in the speedrun
recording will not be edited to look correct in time, and
the speedrun will fail to be verified as taking place in
real time.

Anyway, assuming that the hardness assumption holds,
the runner will be unable to fool our system by editing a
recording in real time in response to retexturing requests.

Given that guessing the retexturings in advance and
editing the recording in real time don’t work, the runner
could also try doing some combination of both, but we
fail to see how doing so would significantly increase the
runner’s odds of successfully fooling our system.

VII. HANDCAMS

Another method for ensuring speedrun veracity for de-
terministic games is through filming the runner’s hands.



6

A deterministic game is a game where entering the
same inputs into the game twice will give the same
outputs. This will defend against TASbotting, game code
modification, and splicing. And unlike the 3D Live Veri-
fication System, filming the runner’s hands can provides
verification of a speedrun that is not happening live. It
does however require more intrusive setup on the part of
the runner.

The hand-filming protocol is as follows. When the
runner plays a speedrun of a game, they record not just
a screen-cap video of the speedrun, but also a video
of their hands and a recording of all inputs that they
make into the game (typically these inputs come from
the keyboard or game controller that the runner is using),
producing a triplet of recordings (h, k, v). This triplet is
then submitted to a verifier V . To verify the run, V plays
the recorded key presses through the game G, generating
G(k), which is then compared with v. If G(k) does
not match v, then the run is rejected. The verifier then
compares the recorded video of the player’s hands, h
with the recorded key presses k, looking for splices in
the video and inconsistency between the video and the
player’s key presses. If the result of this process on h
and v, M(h, v), is a success, and G(k) matches v, then
the run is accepted.

Consider an adversary attempting to generate a spu-
rious submission to be accepted by the verifier. Since
replacing v with G(k) will never cause an rejection,
the problem reduces to that of generating an h and
k such that G(v) is a completion of the game in the
desired time. However, by assumption, it is impossible
to generate a valid h, k pair that passes M(h, k) unless k
was generated by the legitimate player oracle. Therefore,
the player can only generate a valid speedrun with the
desired time if it was run legitimately.

VIII. LIMITS

A major constraint on the adoption of security mea-
sures is intrusiveness. Requiring additional work from
the runner’s part beyond simply pressing record on
the computer and playing the game would meet with
resistance and the additional labour costs and barriers to
entry incurred and subsequent harm to the community
could easily outweigh the benefits of reducing cheating.
This is especially important in the case of the handcam
approach as it requires the runner to buy a camera and
be able to set it up in such a way to make a high quality
video recording of the hands. Additionally, runners may
not like the privacy loss of requiring filming of real life
settings.

One problem with the game engine based approaches
is that many of the most popular games to speedrun are

decades old, and will not have any such speedrunning
countermeasures in place. Another issues is the pos-
sibility that the speedrun heavily involves game states
not anticipated by the developer, potentially rendering
countermeasures useless.

All of these countermeasures hinge crucially on hard-
ness assumptions on editing video. Video game outputs
are an especially regular video type, and it is possible
that machine learning systems will be capable of isolat-
ing any watermarks and working around them. Splicing
video of real world objects, such as the player’s hands
is more difficult, but could potentially be done.

IX. CONCLUSION

As speedrunning becomes an increasingly popular and
mainstream sport, preventing cheating is becoming an
increasingly urgent concern. Here we have presented
two candidate solutions to prevent cheating. One is
an method implemented by game developers to give a
verification mode to their game to allow for guarding 3D
games from splicing attacks. This method requires a live
internet connection but does not any additional setup on
the part of the runner. The other method guards against
a wider range of potential attacks and only requires that
the game be deterministic, but requires the runner to
setup additional equipment to be verified. None of these
solutions are perfect and no perfect solution is possible.
Despite this, we hope that these proposals could help
prevent forged speedruns and help speedrunning mature
as it grows larger and it becomes harder for community
monitoring to be able to keep all issues in check.

REFERENCES

[1] Garrick Brazil, Gerard Pons-Moll, Xiaoming Liu, and Bernt
Schiele. Kinematic 3d object detection in monocular video.
CoRR, abs/2007.09548, 2020.

[2] Graham Finlayson, Clément Fredembach, and Mark S. Drew. De-
tecting illumination in images. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8, 2007.

[3] Xiaolong Liu, Zhidong Deng, and Yuhan Yang. Recent progress
in semantic image segmentation. CoRR, abs/1809.10198, 2018.

[4] Matt Parker. How lucky is too lucky?: The minecraft speedrun-
ning dream controversy explained.

[5] Ashutosh Saxena, Justin Driemeyer, and Andrew Y. Ng. Learning
3-d object orientation from images. In 2009 IEEE International
Conference on Robotics and Automation, pages 794–800, 2009.

[6] Steven T Wright. How the scourge of cheating is changing
speedrunning, Dec 2019.


