6.857 Project

Carson Smith, Berke Saat, Ignacio Parada

May 21, 2021

Contents
1 Abstract 2
2 Introduction 2
2.1 Related Work 3
2.2 Adversary Scheme 4
2.3 Data e 5)
2.4 Unsupervised Approach oo 5
3 Encryption Schemes 6
3.1 Caesar Cipher 6
3.2 Vernam Cipher 6
3.3 ElGamal 6
4 Self Organizing Maps (SOMs) 8
4.1 Pre-processing Text oL 9
5 Results 10
6 Conclusion 17

1 Abstract

This paper aims to use unsupervised machine learning to classify encrypted data into dif-
ferent categories. We chose encryption schemes that are normally applied by generating
a random secret key for every text received. We want to prove that unless there is total
randomness for each message in these encryption schemes, machine learning classifiers such
as the one we implemented, can take advantage of that and recognize the patterns of the
deterministic function on small subsets of the data. To test the success of our model on
various encrypted data, the authors choose to use a combination of three distinct data sets;
passwords, usernames, and product IDs. It proposes the grouping of these datasets through
use of Self Organizing Maps (SOM) to gain information about the data while completely
encrypted. While this paper’s proposed algorithm does not attempt to decrypt any of the ob-
served messages, it aims to gain information about the nature of the message itself. Through
testing, the algorithm was found to classify the data extremely well on deterministic mod-
els, such as the basic Caesar cipher to a non-randomized version of ElGamal. However, as
the approach uses frequency analysis as a main input to group, the more randomness and
complexity that is added, the worse the approach performs, which shows the importance of

randomness of each key while encrypting data.

2 Introduction

Since the onset of advanced Machine Learning models, they have been continually tested on
encrypted data. Once successful, this allowed the privacy of the data, while still being able
to create new functionality. One of the most popular examples of this practice is through
federated machine learning by Google and Apple. Through this, these companies were able
to take encrypted data from each phone in their system, run machine learning models on the
encrypted data, and then send back the encrypted data to the phones which decrypt and use
the results. The most common application for this is the suggestive keyboard, where phones
can autocomplete words and sentences.

However, throughout all the applications of machine learning on encrypted data, almost

all of them are designed to provide further privacy to users while still increasing functionality,
in a benign fashion. This allows us to still pose the question; since it has been proven that
machine learning can be effective on encrypted data, is it possible to, with little to no
information on the encryption methods, gain information on the data that could be harmful
to the security of the system.

This paper aims to set up a series of assumptions and a real world scenario in which this
method can be used to give an adversary the advantage. It will also describe the rational

behind the main components, including the data and Machine Learning algorithm used.

2.1 Related Work

Extensive research has been done on how to cluster encrypted data.

Bost et al. [2] implemented three classification protocols that work without having to
desencrypt data, these were: hyperplane decision, Naive Bayes and decision trees. On top
of that, these protocols could be used in conjunction under the AdaBoost meta-algorithm.
These protocols were constructed using a library that can be used to build other classifiers
besides the already mentioned.

Hesamifard et al. [5] developed techniques that allow deep neural networks to run over
encrypted data in order to classify information. They designed, trained and lastly imple-
mented convolutional neural networks that work over encrypted data.

Li et a.l [6] propose a Naive Bayes classifier that works with multiple data sources and
preserves data privacy. The scheme trains a classifier using a dataset that is provided by
different data owners, without needing a trusted intermediary. The training will not break
the privacy of each owner.

Baldimtsi et al. [1] propose a framework in which a user can upload his data to a server
(for example for outsourcing) and later ask the server to transform and sort the result. In
this case the privacy is obtained by using a secure coprocessor with a minimal amount of
computational and memory resources. Both the server and coprocessor are assumed to be
honest.

Wang et al. [9] propose a KNN which can search over encrypted data, mostly thinking

in the use case of search in untrusted clouds.

Al-Rubaie et al. [8] do a review of the different ways in which machine learning systems
work and collect and process data, with a special focus on privacy.

It is important to notice that most of these papers focus on keeping data private, but
assume that all parties are well-behaved and no attacker is present. This is why the writers

propose to use similar methods, but with malicious intent.

2.2 Adversary Scheme

To provide a real world scenario in which this approach would be beneficial, we define three
actors. Alice, a benevolent defence contractor, Bob, a malicious defence contractor that is
in direct competition with Alice, and Craig, a supplier who works directly with Alice and
Bob to fill orders for their projects.

To start, we assume that there are three main categories between (Bob,Alice) and Craig;
Order Requests, Messages, and Login Requests. Thus, we offer the following adversarial
schemes. For a few months, Bob passively watches the encrypted communication from Alice
to Craig, collecting all of the communications as a dataset. At the same time, Bob will send
one communication, of each category type, to Craig and view the encrypted version of it.

Once Bob has collected the dataset, he will run all of the data through the unsupervised
approach defined in this paper, resulting in a series of nodes with one type of encrypted
messages belonging to each of them. However, given that this method is unsupervised, Bob
does not know which node belongs to which type of communication as of yet. To determine
this, Bob takes the labeled data that he has collected between himself and Craig and plots
it alongside the other data. From this, Bob can determine with some level of certainty the
nature of each node.

Moving forward, Bob can now passively observe the communication between Alice and
Craig and, by plotting each encrypted method and discovering the closest node, can deter-
mine the nature of the communication between them. This can potentially give Bob and
advantage as he can, for example, then determine when Alice is ordering a lot of supplies

from Craig.

2.3 Data

Three different categories of data were used: usernames, passwords and product IDs, each
of them with 500 items. In order to run an experiment that was comparable to an actual

scenario the data sets used where as real as possible.

e Products: data set that contains real amazon product IDs from January 2020.[7]

e Usernames: data set that contains the username of any reddit account that left at

least one comment. It is up to date until 2017. [3]

e Passwords: since a list of real passwords can not be used for obvious reasons, a subset

from the rockyou list of common passwords found in Kali Linux was used.|[4]

2.4 Unsupervised Approach

This paper revolves around the idea that an unsupervised machine learning approach can
provide us information on encrypted data without knowing which encryption scheme is being
used and without knowing a direct correlation between any encrypted message and plaintext
message. Thus, for this to be accomplished, the unsupervised ML algorithm must be able
to accomplish a series of things. Perform Frequency Analysis, look at both macro and micro

patterns simultaneously, and disregard noise as best as possible.

Frequency Analysis: The model must be able to determine the most frequently used

sequences within the encryption and, from there, isolate them to begin pattern recognition

Macro and Micro Patterns: Similar to frequency analysis, the text pre-processing, must
convert the data into a series of vectors that simultaneously keeps the integrity of the en-
cryption but also highlights minute elements of the encrypted text to be used in frequency

analysis.

Disregard Noise: Given that a lot of the encrypted text will be about a specific username,
password, product ID, etc, a model must be great at determining the important aspects of

a given input and consider those much more than the other aspects.

3 Encryption Schemes

3.1 Caesar Cipher

We implemented a Caesar Cipher for the purpose of baseline testing. The characters con-
sisted of lowercase letter, uppercase letters, and numbers, and therefore the cipher operated
on mod 62. A new random shift value was generated for each text, and the shift was applied
to every letter of the text.

The first time we ran our model was on the data encrypted with a Caesar Cipher. Once
we got good results which we will elaborate on later in this paper, we decided to move
forward with our model and run it on data encrypted with more complicated encryption

schemes.

3.2 Vernam Cipher

Vernam Cipher also operated on mod 62. The process included generating a key of some
large length, and a one time pad of the message with the generated key.

Every character had an order between [0,61]. The key generation was sampling random
values in that interval, finding its corresponding character, and eventually concatenating
those characters to have one string as the key of our encryption.

Vernam is clearly more complex then Caesar. However, given the frequency of summing
the same two letters over a large dataset, we expected there to be enough patterns for our

model to recognize and thus work well on data encrypted via a Vernam Cipher.

3.3 ElGamal

In ElGamal, the main steps are key generation, encryption and decryption. In a real world
scenario, there would be two sides of some communication, and they would have secret keys
that the other does not know about. For example, if Alice and Bob are communicating,
Alice would have access to a and Bob would have access to b. As the common secret key is
g™, Bob receives the value h = g% and compute h® to get that secret key, and Alice receives

a public key pk = g* and computed (pk)® = g*.

In order to imitate this behavior in our implementation, we followed the steps below:

Key Generation

e Choose a random “large” number ¢. For our implementation, we chose numbers be-

tween 102° and 10%.
e Choose a random number g in the interval [2, ¢].

e Choose two different large numbers (a,b), so that GCD(a,q) = GCD(b,q) = 1. In a
real life scenario, one side of the communication would only have access to a, and the

other would only have access to b.
e Compute h = ¢g* mod gq.

e Output the list of values, [g, a,b, q, h]. The values g, ¢ are used in both encryption and
decryption functions, but b, h values are only used in encryption and the a value is

only used in decryption.

Encryption

This function receives the inputs of (g, g, h,a) and the message.

e Compute the public key, pk = ¢® mod q.
e Compute the secret key, sk = h® mod ¢ = ¢** mod q.

e Compute the ciphertext by multiplying the order of each letter in the message by the

secret key, g.
e Output the ciphertext and the public key for decryption.

e Output the string concatenation of these numbers to be an input into our classifier.
We are aiming to apply our model on textual data, as described in section 4. Thus

this allows us to interpret these numbers in a way that we can run our model on them.

Decryption
This function receives the inputs of (¢, g,b) and the ciphertext. It was implemented for
the purpose of testing our own encryption scheme, and asserting that the input message to

our encryption function is the output of our decryption function.

e Compute the secret key, sk = (pk)* = ¢g.

e Divide each number in the ciphertext by the secret key, and convert the resulting

number into a character based on the order.
e Concatenate all letters, output the text.

Randomness

As we tried to prove the importance of randomness in ElGamal’s key generation, we
added a new argument of randomness into our key generation function. The purpose of
this was to control the z in the logic of repeating the key x times. We wanted to show
that unless an encryption scheme operates on total randomness, and has some deterministic
behavior among a subset of the data, a machine learning model such as a self organizing
map could take advantage of that. As the function repeats the same set of (g, g,a,b) for

multiples of data, we expected our model to recognize such patterns.

4 Self Organizing Maps (SOMs)

SOMs, or Self Organizing Maps, are the unsupervised machine learning approach this paper
chooses to classify the encrypted data. SOMs are a clustering technique in which a matrix
of nodes are used to topographically cover a dataset. Looking at image 4.1, we can see a
brief representation of this process. The matrix of nodes, in black, is initialized in the left
frame of the image. Throughout the training process, in the middle frame, a single point is
analyzed, moving the nodes to cover the data. Finally, when training is complete, the nodes
should complete a topographical map over the data where a point is identified by the node

closest to it.

“pip 8

Figure 4.1: A visual demonstration behind the inner workings of SOMs.

This model was chosen because of its direct match to the specifications detailed in 2.3.
Primarily, SOMs are great at ignoring both noise and outliers. In our example case with
Alice, Bob, and Craig, both would pop up with great likelihood. Whether the noise is related
to a specific product that Alice is ordered or outliers such as an entire communication
category that Bob was not aware existed, SOMs do a great job at determining the main
categories of data and determining which dimensions of a single entry are critical.

Additionally, SOMs are designed to topographically represent data or, in other words,
perform dimension reduction to form a mapping. Thus, SOMs, in essence, use Macro patterns
of the dataset to place nodes in their final positions and Micro patterns to influence the

neighborhood of nodes around an individual point.

4.1 Pre-processing Text

To take full advantage of the SOMs, the data must be prepared in a way that is both an
acceptable input format but still maintains integrity to the content of the text.

As defined above, SOMs take an input of a list of n-dimensional vectors. It is immediately
apparent that the plain encrypted data can not be fed into the SOMs as is. Thus, this paper

implements the following approach.

Step 1: For a specific encrypted message, c, split into [cy, ¢o, 3, ..., ¢,] Where ¢; is a block of

5 characters of the encrypted text. (i.e. ¢; = ¢[0: 5])

Step 2: For all unique ¢; € ¢ € C, where C is the dataset of all encrypted data, assign ¢; to
a unique integer a €(1,len(unique ¢;)). Thus, creating a dictionary, map, that maps each

unique 5-char text to an integer.

Step 3: Apply this mapping to each ¢ € C. Converting [y, ¢o, 3, ..., ¢,] tO

s = [map[c1], map[ca], maplcs], ..., map|c,]], effectively turning c into a vector.

While this approach may not perfectly capture patterns of the data, it accomplishes the
Macro and Micro requirement presented in 2.3. This allows SOMs to look at small blocks of

the encrypted data while still keeping the overall flow of the cypher text whole.

5 Results

Plaintext

To begin the testing, the SOMs algorithm was run on the plaintext dataset to provide a
baseline for performance on the encrypted data. As seen in figure 5.1 below, the SOMs had
great success on this data and were able to find cluster placements that accurately split the
data. After back calculation, similar to that described in 2.1, it became clear that node 0
was related to passwords, node 1 with usernames, and node 2 with product IDs. The SOMs

were also able to perform with the following characteristics:

- Passwords: 91.6% accuracy, 100% precision
- Usernames: 91.2% accuracy, 100% precision

- Product IDs: 100% accuracy, 85.32% precision

© cluster=0
cluster=1
cluster=2
centroid
centroid
centroid

0.8

XXX o

0.6

0.4

0.2

250 300

0.0

Figure 5.1: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for plain text
Caesar Cipher

Next, this paper decided to try SOMs on a very simple encryption method, the Caesar
Cipher. While this would make the message unreadable to the naked eye, SOMs would view
the input as the exact same, as we are changing every single character by the same offset.

Here we can see that the clusters have changed their respective category, although this is

10

expected given that the nodes are randomly placed at the start. Here, node 0 is related to
Product IDs, node 1 with passwords, and node 3 with usernames. The characteristics were

also very similar at:

- Passwords: 96.8% accuracy, 100% precision
- Usernames: 95% accuracy, 100% precision

- Product IDs: 100% accuracy, 92.42% precision

While there is a nominal increase in accuracy and precision across the different categories,
this is the cause of the the inherent randomness in the model and, given enough training

iterations would possess the same characteristics.

540

300 1 o cluster=0
530 cluster=1
08 o cluster=2
2501 # centroid
520 ¥ centroid
i centroid
0.6 200 X x
510 &
150 &

0.4

500 .r-,:" °
wo{ §& 'e%® o o °

bd % % m. o oe - o @
] ¢ ® .

8
490 50 A lgo 0.08

] ‘t T, & m«wwm

0.2

480 .y~ .
04 - - AP i @ O

0.0

T 0 50 100 150 200 250 300

Figure 5.2: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for Caesar Cipher
Vernam

With the Vernam Cipher with block size 7, we begin to see a slight difference in the
data; however, this is most likely due to the fact that the block size is not divisible by
5, the size that we are breaking the text into, and thus can change the look of the data.
However, SOMs was still able to successfully pick up on this new pattern, relating node 0
with usernames, node 1 with product ids, and node 2 with passwords. Thus, generating the

following characteristics:

11

- Passwords: 96.8% accuracy, 100% precision
- Usernames: 94.6% accuracy, 100% precision

- Product IDs: 100% accuracy, 92.1% precision

540
300 ° ® ©® cluster=0
° °
530 ii’] cluster=1
e o % [] ° q ® cluster=2
%} ® L4 & ¥ centroid
520 b I L) e ° ® 00! X centroid
200] K o o ® o, % K centroid
¢ e & - °
o e®e e o 9
510 150 ﬁ.y ° g g °o° P °
“ % o qd @ ¢
” o ° goe® oo [®
b x g L] () D.
500 1001 o ° L] e o
[] (J
oe ®
50 [] LA e % o
490 o g0, ® @
% %y 0°°@R°0°° 0% H o
0 0 - semn cde S ®
0 50 100 150 200 250 300

Figure 5.3: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for Vernam Cipher with a block size of 7

The SOMs algorithm was also tested on a Vernam Cipher with a block size of 10 to
determine if it would perform differently. However, as seen in 5.4 it did not. It performed

with the following metrics, almost identical to the previous tests:

- Password: 94% accuracy, 100% precision
- Usernames: 98.8% accuracy, 100% precision

- Product IDs: 100% accuracy, 92.42% precision

540 300 4 ® cluster=0
cluster=1
o cluster=2
>0 250 X centroid
X centroid
20 200 xX X centroid
510 ®
150 A Py °
%°® ae ‘
500 3
® ° s
wo] & o) % o e °
3 ® Qﬁ ee e o ° @
490 L4 °
50 gooo ooogcoeo °
@0 ° c’o 82 %Oo Oﬁo %Oo
A@W@m
04 <1|D eo® ® e
470
L 0 50 100 150 200 250 300

Figure 5.4: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for Vernam Cipher with a block size of 10

12

ElGamal

Finally, we have the ElGamal results. As defined above, we are performing these exper-
iments on 4 variations of ElGamal with increasing levels of randomness to determine how
the randomness impacts this approaches success.

For the first version of ElGamal, with no randomness, we see the first ever perfect classi-
fication of the points in figure 5.5, where all three categories have 100% accuracy and 100%
precision. This is most likely since each of the character in this encryption scheme are rep-
resented by a large integer. And thus, the differences between the data, and more-so the

similarities between the same categories, can be discovered much easier.

1.0
50 4 []
540 ° .
8
°
0.8
w04{ ®
520 ®
[] ® cluster=0 ©
06 304 ., X. Y cluster=1
. ® b cluster=2
500 [] a8 *® centroid
20 *® centroid
04 »® centroid
480
10 A
0.2
x
460 [[
04 000%0% oo 6X%e%%0e® °°* %°
0.0 — 0 10 20 30 40 50

Figure 5.5: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for non-randomized ElGamal

For the next level, randomizing every 250 entries, we see the data itself becomes a lot
more visually random in the first two dimensions (in figure 5.6). This also becomes the first
example where the algorithm is not able to strongly associate specific nodes with specific

categories. The categories fall into nodes as below:

- Node 0: 500 Passwords, 5 Usernames
- Node 1: 250 Product IDs, 495 Usernames
- Node 2: 250 Product IDs

13

While these are not the results that have been expected in the previous cases, this paper
now presents the base case, in relation to the real world example, to better compare these
new cases. In the cases where bob simply sees the encryption and has to guess between
the three categories, it is obvious to see that Bob will have, approximately, a 33% chance
at guessing the category. However, extrapolating the relations above, we can see that, if an
entry is in node 0, Bob will know, with 99% certainty that it is a password. If an entry is
in node 1, he will know that it is a product ID with 34% probability and a Username with
66% probability. Finally, if it is in node 2, he knows it will be a product ID with 100%
certainty. Thus averaging to a 99% accuracy for passwords and 66% accuracy for product

IDs and Usernames, much better than that of the 33% chance he has purely guessing.

1.0 7
700
5000 e ° °® o . o
. % L] °
0.8 o °
cfe []
4000 «* ¢ 1) .
600 L]
® . [] [] P
o cluster=0 g @ * o ° ° L]
0.6 3000 cluster=1]
o cluster=2 X .
500 % centroid L 4 °
20004 ¥ centroid o L] . L4
troid ® °
0al .x centroi . : o ® (] °® : oy
°8 X ® . L4 ® oo
1000 el @ we
400 e o 0.. p ®
° [) ° °
op . ® o °
J ° ° °
02 ol ® e %9 o0 . °
300 0 1000 2000 3000 4000 5000
0.0 —

0.0

0.5

25

3.0

Figure 5.6: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for ElGamal randomized every 250 entries

In the case where El Gamal is randomly generated every 10 entries, we see the same

pattern from the above case repeated (in figure 5.7). This holds with the nodes being

associated with the following number of entries:

- Node 0: 3 Passwords, 477 Product IDs, 15 Usernames

- Node 1: 1 Password, 22 Product IDs

- Node 2: 496 Passwords, 1 Product ID, 485 Usernames

14

Again, this averages to approximately 96% accuracy for Product IDs and 50% accuracy
for both passwords and usernames. Which is, again, higher than the pure base case of Bob

guessing and being correct 33% of the time.

6001 o cluster=0 .
cluster=1 " 5 P
e = - Q
o8] 800 sop] © cluster=2 % ‘-X.X
x centro!d ® e
x centro!d o x® ®]
4004 X centroid e © % |
06 600 e o “ o ¢)
300 ¢ . L ® ‘
o 8 o N
0.4 400 200 4 o ° ° oe® e a e
! U]
4 : l LN
o & ° *
1009 4 °]
| ¢ , ®
02 200 > o .~ ® o o] 8 £
® > <
0| ouse e0 B enuuoee san sl weno cumme oo emus
0 100 200 300 400 500 600
0.0

10

15

Figure 5.7: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for ElGamal randomized every 10 entries

Finally, we look to an El Gamal version where the data is encrypted every time the
encryption is run. From the image on the right, in Figure 5.8, it is obvious that this severely
increases the randomness of the model and thus becomes harder for SOMs to notice any
distinguishable pattern. However, very surprisingly, even with this much randomness, the
model is able to determine some repeatable patterns from the data and the pattern from the

previous cases is upheld. We have the following associations per node:

- Node 0: 192 Product IDs
- Node 1: 307 Product IDs, 2 Usernames
- Node 2: 500 Passwords, 1 Product ID, 498 Usernames

Here, even with this case, Bob would be able to expect an average of 99% accuracy for
predicting when it is a product ID and 50% accuracy when predicting when it is a password

Oor usernarmne.

15

000 14000 4 ° p. o*® H™
lso'.?"’ o '9;" oo &

08 12000 (£ H 8 °oe 3 o
& é{r‘.;sg.e e s

10000 " cluster=0
700 5 ‘ 2

R < N o 2 S

. M BROFR O % oo

. 500 o centroid
4000 Qt’ 2 ..qéﬁ.. t" ..~

02 400 oy ‘,n. ls,; f 20s® © .Q,o.y#.. #

of "* ".%’fhu' ‘f

0.0 L+ 200 0 2000 4000 6000 8000 10000 12000 14000

Figure 5.8: Data points per cluster, where each vertical third represents a cluster, (left)

and Data points plotted with clusters (right) for ElGamal randomized every entry.

It is worth noting that, throughout most of the early results, we observe 100% precision
in passwords and usernames but not for Product IDs. This is due to the extreme randomness
that Product IDs have that is not as inherent in the other classes. Thus, if you have a really
random password or username they will be grouped with the Product IDs; however, this will

very rarely ever happen in reverse.

16

6 Conclusion

In this work we studied if information can be obtained from encrypted data using self orga-
nizing maps. By running the same ElGamal algorithm with varying levels of randomness,
we showed the success rate of the classification on the encrypted data.

First, we showed our model work well with encryption schemes that are older, and less
complex than the ones currently being used in modern systems. We can conclude here that
this classifier works well on Caesar and Vernam ciphers, and gives the adversary a very good
chance of guessing the category of the data being shared. The reason is that the frequency
of an input letter outputting the same letter after encryption is fairly high in both cases.
Therefore the model is able to follow such patterns with high frequencies, and classify them
correctly.

However, with ElGamal, we see the model fail as the domain of the output, i.e. the
interval of numbers that can be outputted is very large. The main point here is that total
randomness is mandatory for a semantic encryption scheme like ElGamal. We imagined a
scenario where to improve the performance, the randomness is decreased and the same set of
keys is repeated for multiple messages. This may break the security of the overall system for
various reasons, and in this paper, we have shown one concrete way of gaining information
when the encryption scheme does not compute a brand new random key for every message.

As shown in the results section, the attack we have chosen have limitations. It will fail
to gain information and break the security of a system as long as the system uses some
pseudorandom function function at every encryption. Therefore, we do not see the attack
we described in this paper have a large impact on the more modern encryption schemes
which rely on pseudorandom functions, but we see this experiment as a way of proving the
importance of using them in modern encryption schemes.

As further work, different deep learning models could be used in order to handle total
randomness better, and maybe even show better classification even then which would break

the security of the scheme.

17

References

1]

F Baldimtsi and O Ohrimenko. Sorting and searching behind the curtain. URL: https:

//link.springer.com/chapter/10.1007/978-3-662-47854-7_8.

R Bost et al. Machine learning classification over encrypted data. URL: http://iot.

stanford.edu/pubs/bost-learning-ndss15.pdf. NDSS, 2015 - iot.stanford.ed.

ColinMorris. Reddit Usernames. URL: https : //www . kaggle . com/ colinmorris /

reddit-usernames.

Common Password List (rockyou.trt). URL: https://www .kaggle . com/wjburns/

common-password-list-rockyoutxt.

E Hesamifard, H Takabi, and M Ghasemi. Cryptodl: Deep neural networks over en-
crypted data. URL: https://arxiv.org/abs/1711.05189.

T Li et al. Differentially private Naive Bayes learning over multiple data sources. URL:

https://www.sciencedirect.com/science/article/pii/S0020025518301415.

PromptCloud. Amazon Product Dataset 2020. URL: https ://www . kaggle . com/

promptcloud/amazon-product-dataset-2020.

M Al-Rubaie and JM Chang. Privacy-preserving machine learning: Threats and solu-

tions. URL: https://ieeexplore.ieee.org/abstract/document/8677282/.

B Wang, Y Hou, and M Li. Practical and secure nearest neighbor search on encrypted

large-scale data. URL: https://ieeexplore.ieee.org/abstract/document/7524389/.

18

