
Securing 2D Games Against Speedrunning
Video Forgeries: System Design Proposal

Megan Prakash (meganp@mit.edu)
6.857 Final Paper

Spring 2021

Abstract

“Speedrunning” is an increasingly popular activity within the video game space. Players, known
as “speedrunners,” attempt to complete an entire video game or video game level in as little
time as possible. The recent rise of streaming platforms and a culture of consuming video
game content has caused speedrunning to rocket upwards in popularity and become
competitive on a worldwide scale, where top players become known across the entire
community. As a result, fake speedrun techniques have proliferated. In this paper I propose a
system design to augment a 2D video game such that (1) the game is resistant to the replay
and editing attacks we describe, and (2) gameplay and streaming experience is not
compromised for the user or the streaming platform.

Background

“Speedrunning” is an increasingly popular activity within the video game space. Players, known
as “speedrunners,” attempt to complete an entire video game or video game level in as little
time as possible. This often requires the player to execute extremely precise controller inputs or
take advantage of bugs in the game source code, which they use to evade the game’s
obstacles extremely rapidly. For example, it takes most players at least 10 hours to complete
Super Mario 641, but the speedrun world record tracked by speedrun.com is currently 1 hour,
38 minutes, and 21 seconds, as of writing this paper 2.

An integral part of speedrunning culture is players recording and sharing videos of their
speedruns. The recent rise of streaming platforms and a culture of consuming video game
content has caused speedrunning to rocket upwards in popularity and become competitive on

2 https://www.speedrun.com/sm64

1 https://howlongtobeat.com/game.php?id=9364

mailto:meganp@mit.edu


a worldwide scale 3, where top players become known across the entire community. As a
result, fake speedrun techniques have proliferated.4

Some of the most common methods for creating a fake speedrun video are (1) source code
hacks, where the user changes the source code of a game to make it easier to speedrun, (2)
tool-assisted speedruns, where the user uses software or a physical robot to send scripted
controller input to the game, and (3) video fakes, where the speedrun video shared on a
streaming platform has been spliced from multiple video clips, and/or a “live” stream video was
in fact recorded previously5.
In this paper, I focus on the third technique: video fakes. The current “state of the art”
technique for detecting speedrun video fakes is essentially for communities to rely on human
moderators and audience members to identify inconsistencies in the video. For example, if two
video clips have been spliced together, there may be discontinuities in the game graphics at
the point of the splice. However, it is not guaranteed that discontinuities will be identified or
that they will even exist in a spliced video. Additionally, if a malicious speedrunner claims to be
streaming live but in fact is streaming a pre-recorded video, there is no way to verify this.
Players often try to demonstrate the integrity of their video gameplay with good-faith measures,
such as showing their computer’s clock within the screen, but this is not sufficient for
establishing the legitimacy of their speedrun videos.

Some game developers are now implementing software-based strategies for preventing
speedrun forgeries within their games that rely on online systems. Given this paradigm, I will
propose addressing speedrun video fakes by implementing additional security measures within
a game that interface with a trusted verification server. In particular, I focus on the space of 2D
games, which I will define in the next section.

Problem Statement

In this paper I propose a system design to augment a 2D video game such that (1) the game is
resistant to the replay and editing attacks we describe, and (2) gameplay and streaming
experience is not compromised for the user or the streaming platform. For live-streamed
gameplay, our design adds the ability for a streaming platform to request attestation from the
player, who must prove the liveness of their streamed gameplay. For uploaded speedrun
recordings, our design adds a subtle augmentation to the background of the 2D game that
allows the video platform to computationally verify the integrity of the recording, i.e. detecting if
the recording has been edited.

5 https://arstechnica.com/gaming/2019/12/how-the-scourge-of-cheating-is-changing-speedrunning/

4 https://www.polygon.com/2017/5/22/15675028/speedrunning-cheats

3 https://www.wired.com/2016/01/speedruns/



I intend to achieve enough resistance to the attacks such that the attacks are “sufficiently
inconvenient” for a malicious player to achieve. We define “sufficiently inconvenient” to mean
that the player would have to resort to hacking the game source code in order to circumvent
the security measures.

I define a “2D game” as a game that has a static background plane and a foreground plane
with dynamic gameplay. An example is below:

The mountain and sky in the background are a static image that scrolls as the player’s
character moves forward. Superimposed on the background are the gameplay elements, which
are dynamic and interactive.

Definitions

The actors in the system are the player, the game, the server, and the viewer.



● Game: 2D appearance, for example a platformer side-scrolling game (show figures).
Contains a background plane and foreground elements. The background plane contains
a static image that translates across the screen.

● Streaming platform: Consumes video streams frame-by-frame as uploaded in real time
to the website, then displays them to stream viewers. The platform has the ability to
augment the frames before displaying them to the viewers, commonly used to overlay
live chat transcripts and other interactive elements.

● Player: plays the game using their keyboard and mouse and attempts to complete the
entire game or level as rapidly as possible, often taking advantage of narrow windows
of opportunity or very precise maneuvers. A malicious player launching the attacks we
describe will (1) record multiple gameplay videos, then splice them together, and/or (2)
claim to be streaming live from their real-time gameplay, but in reality is streaming a
recorded video to the platform.

● Viewers: passively observe gameplay with the ability to comment live and view the
video or recorded stream after the gameplay event. Viewers have an interest in
preventing speedrun forgery, as described above.

Assumptions

● The player is assumed to be potentially malicious and has root access to their
computer. The game developer, server, and viewer are considered trusted.

● Perfect security isn’t possible, but we can make it “sufficiently inconvenient” to forge a
video that passes verification by the server

● The streaming site has access to trusted third party users. It can serve as a root of trust.

As a note, capturing user keypresses to verify that a video corresponds to a legal set of game
inputs and was contiguously does NOT guarantee the video’s authenticity. Tool-assisted
speedruns, as mentioned earlier, are very common and in fact are their own realm of speedrun
communities. Even though tool-assisted speedruns are outside the scope of this paper, I
discard keypress captures as a possible solution because it is so easily circumvented by a
malicious player trying to forge a speedrun.

Proposal

I propose the addition of self-identifying dot patterns to the background of a 2D game, which
will encode attestation information and are difficult to remove from a video. This is done with
the purpose of adding methods to detect the integrity and liveness of a streamed video.



Position-coding patterns

Position-coding patterns (here referred to as “dot patterns”)678are a technology that have
existed for multiple decades and were originally developed for multimodal interaction with
printed paper. A dot pattern generally consists of a random-appearing matrix of
nearly-imperceptible dots, printed onto a sheet of paper. Any sample of the dots, e.g. captured
by a camera mounted on a pen, can be used to identify (1) which page is being observed, and
(2) where on the page the sample is located.

In the following image, array A is an array of marks comprising a dot pattern. The subsample
shown is taken from location (x, y) within A. Given the correct decoding algorithm for the
generated pattern A, it is possible to decode the subsample and retrieve the identity of A and
the location (x, y)

8 https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487653

7 https://arxiv.org/pdf/0706.0869.pdf

6 https://link.springer.com/article/10.1007/s00138-007-0093-z

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7487653
https://arxiv.org/pdf/0706.0869.pdf
https://link.springer.com/article/10.1007/s00138-007-0093-z


Given this property, it is possible to use a dot pattern to encode an arbitrary message that can
be decoded using any sufficiently large subsample. I will refer to this operation as generating
array A from message msg using A = Dots(msg).

I propose using dot patterns to create unique encodings of single gameplay events, then
watermarking the background of a 2D game with a corresponding dot pattern each time
gameplay begins. Any third party can subsequently watch a gameplay video and decode the
background pattern in order to identify the gameplay event. This occurs as follows:

Pattern generation scheme:

1. Player loads the game. At loading time, the game phones the verification server.
2. The server takes the current timestamp and signs it to make Sign(current_time). Then,

it encodes it in a dot pattern using Dots(Sign(current_time)). Finally, it sends this dot
pattern back to the game.

3. The game loads the background image into memory, performs some randomization
of it (e.g. move elements around, change the color values), then applies the server's
dot pattern as a mask to the background plane such that the dots are near-invisible
but can still be identified.

4. When the server consumes the gameplay video, either as a recording or a stream, it
can decode the dot pattern in each frame. Part of the reason this is easy for the
server is because the dot pattern is decodable using *any* subsample, so the server
can decode it no matter how the background has scrolled or how the foreground is
occluding it.

See figure on next page:



Security strength

The server identifies forgery as follows:

● If the dot pattern changes at any time, then the video has a splice.
● If the timestamp is earlier than the start time of a claimed livestream, then the video

wasn't live.
● If the dots aren't correctly occluded by the foreground, then the dots have been added

after the video was recorded.

It is plausible that, since the server has a method for identifying the dots, the same method can
be used by a player to identify dots in their video, remove them, then copy dots onto the video
from a different video clip. A potential countermeasure is for the game to add dots to the
background in a lossy way that makes them impossible to remove.

Game security:
● The dot pattern scrolls with the game, so it is not possible for the player to capture it

and reuse it throughout a live stream
● The game needs to store the base background image on disk, as part of its source.

However, the version of the image with the dots superimposed is held in memory,
making it more difficult for the user to find and modify.



Limits of the system

Implementing this design in a video game takes cooperation from the game developer. Though
game companies have recently demonstrated interest in anti-forgery measures, such measures
are only available to newly created games. Meanwhile, Super Mario 64 was published in 1996
and remains an extremely popular game in the speedrunning community.

Additionally, as mentioned in the introduction, video fakes are only one aspect of speedrunning
forgery.

Hope you have a wonderful summer. Be well!
Thanks,
Megan


