
6.857 Project: QRAttack

Eric Pence, Rami Rustom, and Lindsey McAllister

May 20, 2021

1

Contents

1 Introduction 3

2 Background 3

2.1 QR Code Description . 3

2.2 QR Code Editing Potential . 4

3 QRAttack Tool 5

3.1 Description of Destroy Algorithm . 5

3.2 Description of Change Algorithm . 6

3.3 Optimizations . 8

3.4 Results . 9

3.5 Further Investigations . 10

4 Experiment 12

4.1 Methods . 12

4.2 Results . 12

4.3 Analysis . 13

5 Potential Extensions 15

6 Potential Defenses 16

7 Conclusion 17

2

1 Introduction

QR codes are increasingly ubiquitous in public spaces for a wide variety of purposes, but

they were never designed for security. While most QR codes in the wild are legitimate,

malicious actors can use this capability for a variety of attacks. They can direct users to

phishing sites, have users download malware, or force reset users’ phones, just to name a

few [2,3,4]. The COVID-19 pandemic’s emphasis on contact-free communication has made

these potential attacks all the more worrisome: everything from restaurant menus to contact

tracing now uses QR codes [5]. Since QR codes are not human-readable and efforts to

customize or aesthetically alter QR codes have seen limited success [6], it is difficult for

individuals to discern between safe and dangerous QR codes. Some scanners include various

security measures, but there are a wide and heterogeneous variety of apps and scanning

mechanisms in use [7].

Given this landscape of several mechanisms for exploitation, we were interested in attacks

that involve malicious manual edits to QR codes (think of using a back-pocket sharpie). Our

ultimate goal was to build a tool that scans a QR code, and calculates the minimum number

of edits (with a sharpie or black pen) that a person needs to make in order to change the

QR code payload into any payload of their choice. Our tool would also be able to sabotage

a QR code and destroy it so it becomes unreadable to a scanner. We successfully built such

a tool [16]. Further, we are interested in whether people will still scan a code that someone

has edited with a sharpie after using our tool. We hypothesize that people will still scan

manually doctored QR codes in the wild, and we wanted to test this empirically with a user

study. If this is in fact true, such a tool would highlight the very real danger of naively

displaying or scanning QR codes.

2 Background

2.1 QR Code Description

QR codes are two-dimensional bar codes developed in 1994 for manufacturing, and have

become increasingly ubiquitous as a convenient, low cost mechanism for distributing digital

3

information. A QR-code can encode up to 4296 ASCII characters and several data types,

including URLs, email-addresses, contact information, SMS/MMS/FaceTime codes, and wifi

settings [1].

Each square on a QR code is called a module. There are versions 1 through 40, which

are used to encode variable amounts of information; however, there are some features which

all QR codes share, each highlighted in Figure 1. First, the position detection patterns are

the large squares around a square in three corners, which help the scanner determine the

orientation. They are always 7 modules by 7 modules surrounded by a quiet zone of width

1 module. Next, there are timing patterns, which help the scanner determine how large the

code is. These timing patterns consist of one horizontal and one vertical strip of alternating

black and white modules. Then, there are spaces reserved for format information and version

information. The scanner reads these first once oriented to know what kind of code to expect

and how to read it [14]. The format information includes the error correction level and the

mask pattern. It is always 15 bits: 5 bits for the error correction level and mask pattern and

10 error correction bits, which are XOR-ed with a mask pattern (101010000010010). There

are four error correction levels: low, medium, quartile, and high, which each leave different

amounts of space on the code reserved for error correction modules. The mask is one of 8

patterns applied across the data modules of the QR code to invert some of the modules to

prevent large chunks of same-colored modules that are hard for scanners to read. The version

information specifies which of the 40 versions the code is. Finally, there are the data and

error correction modules, which encode the actual information stored in the code. QR codes

use Reed-Solomon error correction, and the ratio of data to error correction data modules

depends on the code’s level of error correction, or how much of the code could be lost and

still work. [15]

2.2 QR Code Editing Potential

QR Codes still work when manually edited. The scanners in modern-day smartphones can

tolerate imperfect edges and angles. Some businesses decoratively use colors or non-square

shapes in their displayed QR codes for aesthetic purposes, but the same property that makes

this work also makes manual alterations work. Drawing on a QR code with a marker can

4

Figure 1: Format of QR codes

induce the scanner to read once-white modules as black ones. The layout of QR codes and

existing content on a QR codes does restrict how much someone with a marker can change

the payload of the code.

3 QRAttack Tool

3.1 Description of Destroy Algorithm

Our first goal with our tool is destroying QR codes. The tool would scan an existing target

QR code and give the user an image of the modules they should color in order to break the

target QR code. This means a QR code reader should not be able to scan the code at all.

Further, we want the QR code to still appear legitimate. Breaking it by scribbling over the

entire thing is not an interesting attack.

We targeted the modules that encode the formatting information. Since the scanner needs

to know the error correcting level and the mask in order to read the modules that encode the

payload, removing the modules that specify them as well as all the error correction modules

5

prevents the scanner from reading the code at all. Because of the mask and error correcting

modules, the 15 modules of the format information should never all be black by themselves.

In every QR version, there are 15 modules in the same location relative to the the position

detection patterns. The four sections that contain these 15 modules are immediately adjacent

to the edges of some of the position detection patterns, as seen in Figure 1. Since the position

detection patterns are always 7 modules in width and height, our tool can easily locate them,

and thus format information. An example of a working code and then our tool’s alteration

of that code to not work are shown in Figure 2.

Figure 2: A working QR code and the output of the ”destroy” option of our tool

3.2 Description of Change Algorithm

Our algorithm for changing a target code into a malicious one is borrowed from [13], with

a key optimization that allows for the algorithm to be computed efficiently. We summarize

the algorithm below, and describe our optimization in the next section.

As described above, the attack setting consists of an adversary with a black marker and a

public QR code (ex: a restaurant menu, brochure, business card, etc...). Thus, the adversary

can only change white modules to black. The attack outlined in [13] consists of the following

steps:

1. Scan the target QR code QT , and get the target message MT . We will assume this is

a URL.

2. Generate several malicious candidate messages Mi for i = 1, ..., n such that they visu-

ally resemble the target message.

6

3. Generate the QR codes Qi for i = 1, ..., n corresponding to the messages. Use the same

version and mask as the target code QT .

4. Calculate the symmetric difference Di = QT4Qi for each candidate code. This repre-

sents the set of modules in the same position the differ in color between the candidate

and target codes. Since the QR codes can be represented as 2D matrices with the black

squares as 1 and the white ones as 0, this can be computed using the element-wise XOR

of the two matrices.

5. Calculate the matrix Ri = Qi ∧ Di, which is the logical AND of the candidate and

symmetric difference matrices. This represents the modules in the candidate code that

need to get changed from white to black. Then, compute the ratio

ri =
‖ Ri ‖1
‖ Di ‖1

of modules that need to be changed from white to black to the number of different

modules using the 1-norm.

6. Order the candidate codes by ri by descending order, omitting codes where the number

of codewords (8-bit contiguous sections) that need to be changed is greater than the

error correction level of the code.

7. For each candidate code in order, color the white modules in QT that are black in Q0

black, and check whether the code decodes to something other than MT . This can be

done using the element-wise OR operation Q′
i = QT ∨ Ri. If it does, then a malicious

message Mi has been found.

The intuition behind this attack is that each target QR code lies at a point Qi in the

space of possible codes, and this small region is expanded by using the error correction codes

to a space Q′
i, such that any code in that space will map back to Qi. This simplifies the task

of finding collisions, since we only need to find any overlap between two regions Q′
i and Q′

j

for some malicious code Qj. This can be visualized in Figure 3, which we borrow from [13].

The authors also emphasized that the generated malicious URL should resemble the

target URL, since oftentimes in mobile QR codes readers (usually, the camera application),

the URL is displayed to the users.

7

Figure 3: A visualization of the search space

3.3 Optimizations

The paper leaves out a crucial detail which determines the feasibility of this attack: how to

generate the candidate messages Mi. As stated above, we are optimizing for similarity to

target payload MT for the purposes of executing a practically feasible phishing attack.

Considering strictly messages that are URLs, we can break up the payload of the target

QR code into the following parts:

1. Scheme: This is the network protocol, and for our purposes is usually either ”http://”,

”https://”, or omitted entirely.

2. Domain Name: This is the website domain, and can potentially include subdomains

of the form ”subdomain.domain.TLD”, where TLD is the top level domain (ex: .com,

.org).

3. File Path: This region contains anything after the slash, and before any query param-

eters.

4. Parameters: This contains any HTTP GET query parameters

5. Anchor: This includes anything after the octothorpe (#), and points to a certain

location on the webpage.

In our implementation so far, we have only taken the scheme, domain name, and path

into consideration.

We experimented with several methods for generating payloads and thus QR codes that

are similar, primarily relying on Hamming distance and Levenshtein distance. The former

8

Figure 4: Parts of a URL

simply consists of character substitutions to the original message, and the latter additionally

includes additions and deletions of characters. Given that the message can potentially be

modified but not shortened because the message length is fixed in the QR code, we decided

to focus on the Hamming Distance.

Since each character in the message could be modified, the search space is exponentially

large and thus impractical for a feasible attack. By experimenting with different messages,

we discovered that modifying just the domain name is sufficient to find messages reliably

and efficiently. It is unlikely that changing the scheme leads to anything useful (hutps isn’t

a valid scheme) and any arbitrary path can be created by the malicious agent if she owns

the domain. We therefore decided to keep the same scheme, TLD, and path the same from

the target QR code.

We apply the algorithm described above on the messages Mi,h for h = 1, ..., |MT |, where

h is the Hamming Distance. We therefore run the algorithm on all messages with increasing

Hamming Distance from MT until a successful candidate is identified. By Hamming Distance,

we are referring to the number of characters that are substituted, not the bits of the ASCII

representation. We do this until a valid target code - one that encodes a new message

changing only white to black modules - QT is found.

3.4 Results

We implemented this algorithm and ran it on a web server. We built a simple web interface

that uses a device’s camera to scan the target QR code. Once it recognizes the code, it

displays the payload and offers the user the option to either destroy or tamper with the

code. The interface outputs the new QR code with the modules a user would need to color

in highlighted in red if it finds a valid one. We have tested this on several codes and gotten

consistent results. An examples is pictured in figure 6 below, which shows the QR code for

Massachusetts Covid vaccine administration (shown at vaccination sites!) and the changes

9

that could be made it to make it lead to a different site. The different site that it would

lead to is listed below each set of new QR codes, and the difference in modules between the

target and the malicious codes.

Figure 5: A working QR code and all the valid outputs of the ”tamper” option of our tool

3.5 Further Investigations

To further validate the potential impact of this attack, we evaluated our attack on QR codes

using commercially available, popular QR code generators that targets are likely to use in

the wild. We use qr-code-generator.com [17], qrcode-monkey.com [18], qrstuff.com [19], and

shopify.com [20]. We were curious about the Error correction, version, and mask values that

they used on their QR codes. We also compared these values to the optimal assignment of

those values using the Python library qrcodegen [21], which optimizes for using up all of

the bits in a QR code, and maximizing error correction. We present these results below, as

well as some of the malicious messages we were able to produce. In the first table, for each

generator, we try a variety of URLs, trying out different combinations of schemes, domains,

subdomains, TLDs, and filepaths. For each, we report the error correction level, version,

and mask, respectively.

10

Figure 6: The web app allows a user to first scan the QR code, choose their attack type,

then highlights the modules to color in

MT qr-code-generator qrcode-monkey qrstuff optimal

http://cic-health.com 0, 2, 2 1, 2, 2 0, 2, 6 1, 2, 2

https://flourbakery.com/menu 0, 2, 2 1, 3, 2 0, 2, 3 0, 2, 4

https://news.mit.edu 0, 2, 2 1, 6, 2 0, 2, 0 2, 2, 6

https://news.mit.edu/press 0, 2, 2 1, 2, 6 0, 2, 0 1, 2, 6

https://bit.ly/3f7yVJ0 0, 2, 2 1, 2, 3 0, 2, 0 1, 2, 6

MT Collision

http://cic-health.com None

https://flourbakery.com/menu https://flourbawury.com/menu

https://flourbakery.com/menu https://olourbakery.com/menu

https://news.mit.edu https://dews.mmt.edu

https://news.mit.edu/press https://nfwq.mit.edu/press

https://bit.ly/3f7yVJ0 https://cit.ly/3f7yVJ0

We were able to find collisions using only Hamming distances of 1 and 2 using all of the

websites for almost all of the codes above.

11

4 Experiment

4.1 Methods

To assess whether people actually scan manually doctored codes and thus how dangerous our

tool really is, we conducted a user study. We also wanted to know if the degree of obviousness

of manipulation affected scanning behavior. To do this, we displayed both normal QR codes

and ones manually modified to various degrees on posters and recorded scanning rates. We

hypothesized that many people would still scan doctored QR codes.

We chose four locations on the MIT campus to hang posters with a QR code. Locations

1, 2, and 3 were undergraduate dorms, and Location 4 was an on-campus Covid testing

center. The posters read, ”Scan to help us with a class project!” followed by a large QR

code. Each location had 2 different versions of the poster: one with a control QR code with

no modifications and the other with modifications with a sharpie. We also included different

types of modifications. For locations 1 and 2, the modifications were neatly colored-in with

black sharpie. For locations 3 and 4, the modifications were outside the lines, in different

colors, and imperfectly filled in.

All posters led to different sites with identical content about QR code security. Each ver-

sion at each location led to a different page so that we could count the number of times those

posters had been scans. We kept a timestamp of every page visit but no other information.

We left the posters up in each location for 4 days.

4.2 Results

Each page visit triggered a recording of the page identifier and the timestamp on our server

so that we could evaluate scanning rates. Figure 8 shows the total scans of each type of

poster at each location, and figure 9 shows the hourly number of scans of each type over

time.

12

Figure 7: Messily Doctored Poster in iPhone Scanner

4.3 Analysis

Our results indicate that people still scan obviously doctored QR codes, even though it may

be at lower rates. Interestingly, they scan messily doctored ones at about the same rate as

regular ones, but scan neatly doctored ones at about half the rate. We think this may be

because the messily doctored ones with bright colors and obvious markings are more visually

interesting, so people may be scanning them out of curiosity.

While the raw results at location 3b suggest people may scan the messily doctored ones

at even higher rates than the normal ones, we think that about 20 of the scans may not be

13

Figure 8: Poster Scan Count

Figure 9: Scan Counts Over Experimental Period

legitimate ones. Looking at the timestamps, the activity across all versions looks spread out

over time and relatively consistent with each other; however, the anomaly is the 3b poster

set, which was scanned 22 times between midnight and 1am the first night they were up.

We believe this may have been a single user or group of users who scanned several times out

of curiosity or for humor. Subtracting 20 scans from the 3b count brings it very close to its

control group, 3a, which fits with the idea of users scanning this type of modification at the

same rate they scan other kinds of modifications.

Ultimately, this experiment confirmed that people do in fact scan QR codes that are

manually doctored. Messy alterations even increase this rate. This indicates that in the

wild, a malicious agent who draws on QR codes can do so with the reasonable expectation

that users will scan them. This makes the potential our tool offers to maliciously edit QR

codes dangerous in practice.

14

5 Potential Extensions

As we look toward future work, there are several next steps we plan to take. The first and

simplest is examining how we can manipulate Top Level Domains (TLDs) and their posi-

tioning within a URL to expand the space of potential malicious URLs that we generate. In

our current implementation, we never consider different TLDs (e.g. ’.com’) when generating

our list of potentially malicious QR codes. We only perform manipulations on the subdo-

mains and file path (i.e. what comes after the ’/’). This means that we never attempt to

convert ’.com’ into ’.org’, for example. Since there are over a thousand top level domains,

we are drastically reducing the size of our search space by not considering these possibilities.

Additionally, we never attempt to shift the location of the TLD as we generate malicious

URLs. If 4 characters come before the TLD in the original URL and 5 characters come after,

we only consider malicious URLs with 4 characters before the TLD and 5 after. We could

dramatically expand our search space by considering shifts in the positioning of the TLD.

With these changes comes the task of determining whether expanding our search space in

such a fashion yields a higher likelihood of finding a collision. While we can benchmark this

likelihood through extensive testing, ideally we could derive this likelihood formally, which

motivates the second and third key steps in our future work.

Second, we would like to determine if we are guaranteed to find a transformation, using

only black to white modifications, from any given QR code to a malicious one given sufficient

time and computation resources. Answering this question will require us to understand the

size and composition of the entire space of QR codes encoding URLs. This information

will help us to determine if every QR code that encodes a URL has a ’parent’ which can

encoded with a larger number of black squares. In order to determine this, we will need to

examine the underlying structure of Reed-Solomon error correction further, as well as the

effects QR codes masks have on the white-to-black mapping between QR codes. Importantly,

when looking for a malicious QR code, we do not need to map directly from one un-altered

URL encoding to another. Instead, we can map from one un-altered URL encoding to an

error-corrected version of another URL encoding.

Third, we would like to determine the likelihood of finding a malicious modification that

15

results in a new URL within a given hamming distance of the original. For example, if we

know our machine is only capable of testing QR code contenders within a hamming distance

of 3, what are the odds we find a collision? Determining this will require us to discover

the the mathematical relationship between the QR code representation of URLs that are

similar in character composition. A good place to start on this work will be investigating

the interaction between QR code masks and the UTF-8 or ASCII encoding schemes.

Fourth, we would like to explore what effect altering the version and mask, which is

encoded in the same place on every QR code, has on our ability to find mappings to malicious

QR codes. Initially, this exploration will take the form of trial and error. In this process we

will find out if changing the version number and mask of a QR code yields a new, valid QR

code. If so, we will have identified an easy way to create a malicious QR code. If not, we will

have a ’broken’ QR code but we may be able to determine if a valid QR code is reachable

with white to black modifications. However, this will require us to solve the problem of

identifying malicious codes from an entirely different angle. Instead of solving backward

from URLs, we will need to solve forward from the black and white squares of a URL.

Fifth, we would like to examine QR code encodings of payloads that are not URLs.

We would like to see if we are able to convert commonly used payloads, like URLs, into

commands that force victims to dial phone numbers or alter their phone settings.

Finally, we would like to implement a simple feature in our back-end that searches

Namecheap.com and other domain-buying platforms to see if the malicious URLs we identify

are up for sale. Ideally, our back-end would purchase the URL if it is available, and set up

a website automatically.

6 Potential Defenses

For individuals who wish to publish QR codes for the public to scan safely, we have several

recommendations. The first is that they print the payload under the QR code. This is an

easy, effective way to enable anyone scanning a QR code to verify that the URL their phone

is headed to looks legit and matches what is encoded in the QR code.

Second, we recommend that publishers use the QR code version that is closest in size to

16

the payload they are encoding. This will limit the empty space in a QR code and reduce the

space of possible malicious QR codes for adversaries to search.

Third, we recommend that publishers select that mask version that results in the largest

number of black squares in the QR code. Most commercial QR code generators already do

this, so publishers should not worry too much about doing this manually.

Fourth, we recommend publishers put QR codes in hard-to-alter places if possible. For

example, putting a QR code inside a plastic holder or behind glass makes our attack much

harder.

For individuals who wish to scan QR codes, we have one simple recommendation: don’t

scan QR codes from unknown or un-trusted sources. If it looks like it’s been altered by hand,

don’t scan! We urge anyone scanning a QR code to read the URL encoded before opening

it and double check that they are comfortable following the link.

7 Conclusion

QR codes were never designed for security, and a world increasingly inundated with QR codes

with them may soon come to realize this. Our work highlights both the vulnerability of QR

codes and the practical danger. We designed a tool that allows a malicious actor armed

with a marker to destroy or tamper with QR codes in the wild. This ability could easily

be used to redirect unsuspecting users to a malicious site. Underscoring the practical risk

to such users in the wild, the empirical results of our user experiment indicate that obvious

manual altering does not deter scanning. This means someone armed with our tool could

realistically redirect users to malicious endpoints in the real world. This alarming conclusions

highlights the need for continued work in this area and far greater caution from all users

of QR codes. This information could help the individuals and organizations publishing QR

codes determine whether it is in fact the best choice and collectively whether QR codes

should even be used on the wide scale we see today.

17

Bibliography:

1. A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti and A. Francillon, Optical Delu-

sions: A Study of Malicious QR Codes in the Wild, 2014 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, Atlanta, 2014.

2. Peter Kieseberg, Manuel Leithner, Martin Mulazzani, Lindsay Munroe, Sebastian

Schrittwieser, Mayank Sinha, and Edgar Weippl. 2010. QR code security. In Pro-

ceedings of the 8th International Conference on Advances in Mobile Computing and

Multimedia (MoMM ’10). Association for Computing Machinery, New York, NY, USA,

430–435.

3. Vidas T., Owusu E., Wang S., Zeng C., Cranor L.F., Christin N. (2013) QRishing:

The Susceptibility of Smartphone Users to QR Code Phishing Attacks. In: Adams

A.A., Brenner M., Smith M. (eds) Financial Cryptography and Data Security. FC

2013. Lecture Notes in Computer Science, vol 7862. Springer, Berlin, Heidelberg.

4. Krombholz K., Frühwirt P., Kieseberg P., Kapsalis I., Huber M., Weippl E. (2014) QR

Code Security: A Survey of Attacks and Challenges for Usable Security. In: Tryfonas

T., Askoxylakis I. (eds) Human Aspects of Information Security, Privacy, and Trust.

HAS 2014. Lecture Notes in Computer Science, vol 8533. Springer, Cham.

5. Victoria Turk, WIRED UK. “In a Touch-Free World, the QR Code Is Having Its Mo-

ment.” Wired, Conde Nast, 18 Aug. 2020.

6. M. Xu et al., ”Stylized Aesthetic QR Code,” in IEEE Transactions on Multimedia,

vol. 21, no. 8, pp. 1960-1970, Aug. 2019

18

7. “Secure QR Code Scanner.” Sophos Search, docs.sophos.com/esg/smsec/7-0-5/help/en-

us/mobile/concepts/QRCodeScanner.htm.

8. Kieseberg, Peter, et al. ”QR code security.” Proceedings of the 8th International Con-

ference on Advances in Mobile Computing and Multimedia. 2010.

9. Krombholz, Katharina, et al. ”QR code security: A survey of attacks and challenges

for usable security.” International Conference on Human Aspects of Information Secu-

rity, Privacy, and Trust. Springer, Cham, 2014.

10. Peng, Kevin, et al. ”Security overview of QR codes.” Student project in the MIT

course 6.14 (2014).

11. Narayanan, A. Sankara. ”QR codes and security solutions.” International Journal of

Computer Science and Telecommunications 3.7 (2012): 69-72.

12. Tan, Longdan, et al. ”Robust Visual Secret Sharing Scheme Applying to QR Code.”

Security and Communication Networks 2018 (2018).

13. Kieseberg, Peter, et al. ”Malicious pixels using QR codes as attack vector.” Trustwor-

thy ubiquitous computing. Atlantis Press, Paris, 2012. 21-38.

14. ”History of QR Code.” QRcode.com, www.qrcode.com/en/history/.

15. Thonky. ”Format and Version Information.” Thonky.com

19

16. https://github.com/RRustom/qrattack

17. https://www.qr-code-generator.com/

18. https://www.qrcode-monkey.com/

19. https://www.qrstuff.com/

20. https://www.shopify.com/pos/qr-code-generator

21. https://github.com/nayuki/QR-Code-generator

20

