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Abstract—The most recent pandemic has driven society into
mass social quarantine, a tactic that has been practiced and
proven successful in previous pandemics. But, unlike previous
pandemics such as the last pandemic over 90 years ago (the
Spanish Flu), we now have contact tracing apps that can hasten
tracing of recent interactions of infected individuals. By tracing
new potential infected individuals, the government can monitor
the spread of a disease and ideally keep it contained before it
spreads further.

However, tracing apps have sparked concerns over their system
architecture, especially whether privacy will be jeopardized or
whether personal data are ever misused. In this paper, we will
provide a short overview of two types of system architectures
for contact tracing: the centralized model and the decentralized
model. We will introduce differential privacy and how it can
provide aggregate statistics to health authorities for effective
decision making without compromising individual privacy. We
will conclude with three types of differentially private statistical
techniques and how they can be applied under this setting.

Index Terms—Contact tracing, differential privacy, distributed
model, k-clustering, regression analyses, histogram

I. INTRODUCTION

An interconnected world with efficient transportation and a
virus with high infectivity, low casualty rate and asymptomatic
spread is a recipe for a pandemic. By having high infectivity
and a asymptomatic spread, a virus can expand its global
influence inconspicuously, and by the time it is recognized
after wreaking havoc on vulnerable populations, it becomes
very hard to control and will likely become a pandemic.

The above is a short description of how Severe Acute Res-
piratory Syndrome Coronavirus 2 or COVID-19 was declared
a pandemic, and the above description will likely be similar
for how future pandemics will emerge. The reason is a virus
with high casualty rates will be recognized immediately and
contained. Likewise, a virus with low infectivity will spread
much slowly and stall enough time for it to be labeled as a
threat and contained.

Fortunately, unlike previous pandemics, our society today
is technologically advanced and highly interconnected;
smartphones are ubiquitous and people can communicate
over wide networks. This allows for contact tracing apps
that can work along with social quarantine to curb a virus’s
spread. The importance of curbing a virus’s spread is threefold:

1) It buys time for other countries or regions to enact
isolation policies

2) It alleviates burden on hospitals and their resources so
they can more effectively treat victims

3) It gives time for researchers to study the virus and
develop vaccines. With contact tracing, authorities
can identify local outbreaks and contain them before
carriers unknowingly disseminate the virus further

Individuals can also identify whether they are at risk of
being a carrier and responsibly isolate themselves before
they put their loved ones at risk. Thus, it stands to reason
that one would use the contact tracing app, but issues on
privacy remain a barrier for full participation. In particular,
certain architectures hinge on trust. Aggregate statistics drawn
from curated private data do not guarantee individual privacy
if adversaries combine data from the server with auxiliary
information to narrow down an individual.

However, widespread participation is crucial for the effec-
tiveness of contact tracing apps. The more people participate,
the more likely it is that an infected individual can be identified
through their contacts and notified early of possible exposure,
allowing them to quarantine and avoid infecting others to
slow the spread. In addition, widespread participation leads to
more accurate data on how and where the virus is spreading,
allowing authorities to make better policy decisions. Thus, it
is important to resolve the trust and privacy issues to allow
contact tracing apps to be more effective.

In this paper we propose methods for collecting and analyz-
ing aggregate data from contact tracing apps while maintaining
differential privacy. In particular, we will focus on the cen-
tralized architecture and on three types of statistical analysis:
histograms, regression, and clustering.

The following sections are structured as follows. Section II
will summarize the main architectures of contact tracing apps
and introduce how differential privacy can resolve privacy
leakages from aggregate statistics. Section III discusses
related work in differential privacy. In Section IV we clarify
our threat models, and in Section V we detail methods for
doing statistical analysis under differential privacy. Discussion
and future work is in Section VI, and finally we conclude in
Section VII.



II. PRELIMINARIES

A. Contact Tracing

Contact tracing apps help automate the contact tracing
process by leveraging GPS and/or Bluetooth capabilities of
smartphones to identify individuals who have been in close
proximity. In addition, they also automate the aggregation
of valuable data that health authorities can use to inform
decisions. However, a major challenge in building such
systems is security and privacy, since they collect large
amounts of data about an individual’s location, activity, and
interactions with others. Several architectures have been
proposed to address these challenges, including BlueTrace [1]
and PACT [2]. The survey by Nadeem et al. [3] classifies these
into three main architecture types: centralized, decentralized,
and hybrid [3]. Since hybrid is a mix of centralized and
decentralized, we will focus only on reviewing centralized
and decentralized before introducing differential privacy.

1) Centralized: The centralized architecture works as
follows:

1) A central tracing app server generates a TempID for
each device.

2) The central server encrypts the TempID, with a secret
key only known to itself, and sends the encrypted
TempID to the device.

3) When two devices encounter each other, they exchange
TempIDs over Bluetooth, along with other information
such as a timestamp and signal strength (for determining
proximity).

4) If an individual tests positive, they can choose to upload
their encounters to the central server. The central server
can map the encounter data to specific individuals,
perform risk analysis and other data processing, and
decide if any other devices should be notified.

A key feature of the centralized architecture is that it relies
on a trusted central server, which is responsible for storing
and managing PII, encounters, and other sensitive information.

2) Decentralized: On the other hand, the decentralized
architecture works as follows:

1) Devices generate their own random seeds, generating a
new seed every hour.

2) The seed and the current time are used as inputs to
a pseudorandom function (PRF) to generate a ’chirp.’
Note that this happens on the device itself, not on a
central server.

3) Each device broadcasts its chirps via Bluetooth. A
phone that receives a chirp stores its value and other
information such as the timestamp and the signal
strength.

4) If a user tests positive, they can choose to upload their
seeds and the corresponding times to a server. Other
users can download seeds from the server, and locally
reconstruct the chirps and compare their values to the
values stored on their phone. Thus, the risk analysis
computation happens locally on each user’s device.

In contrast with the centralized architecture, the decentralized
architecture does not require the central server to store any
sensitive data. This makes it a good choice when there is no
entity that people trust to keep their information private. A
disadvantage of the decentralized architecture is that it may
be harder to collect aggregate data.

B. Differential Privacy

Differential Privacy is a method analyzing the privacy of a
protocol or algorithm in a quantifiable manner. The intuition
behind differential privacy is bounding how much information
can be leaked about any single individual from a certain
query. More specifically, it acts as a numerical constraint on
aggregate statistics from databases. An algorithm is considered
differentially private if an adversary cannot determine if a
certain individual’s information is used. In a tabular database
setting, this is synonymous to a single row in a table.

We call two databases that differ by a single piece of
information as neighboring databases. In a tabular data setting,
this means a single row (as described above), but there can be
other settings with other notions of neighboring database. For
example, neighboring graph databases can differ either by a
node or an edge.

The quantifiable notion of differential privacy is known as
ε-differential privacy. A randomized algorithm A achieves ε
differential privacy if

Pr[A(D1) ∈ S] ≤ exp(ε) ∗ Pr[A(D2) ∈ S]

where D1 and D2 or any two neighboring databases and
S is set of all possible results. Thus, the higher the value
of epsilon, the less private, and vice versa. There is also
a tradeoff with the accuracy of the result, which decreases
as privacy increases. Systems tend to have a privacy budget,
a maximum ε value, over many queries, and differential
privacy allows systems to determine how much noise to add
to data/results.

Differential privacy is not a cryptographic technology for
achieving privacy but rather a property of any randomized
algorithm that provides mathematical guarantees on privacy.
Differential privacy guarantees that information about any
single person can not be leaked even with external information
on the dataset along with the queries.



C. Notions of Differential Privacy

1) Global vs Local Differential Privacy: In a global dif-
ferential privacy model, we assume there exists a trusted data
curator. The trusted data curator will store sensitive data and
for any query to the curator, it will return a differentially
private answer. In particular, the curator will add noise to
the query results to serve as a privacy barrier between the
data curator and the authorities behind a query. The additive
noise or perturbation to the aggregate function guarantees
that membership participation is indistinguishable from non-
membership participation. The assumptions in this setting are
that 1) the server is a secure link in the system and 2) the
server will perform the necessary perturbation on the aggregate
function to produce a differentially private answer.

However, the motivation for using differential privacy is to
remove trust in the first place. Hence, the first risk behind a
global differential privacy model is the data curator. If the
individuals behind a data curator are adversarial, then the
benefits behind a global differential privacy model is void
since they can easily access the sensitive data stored in the
data curator.

In a local differential privacy model, data owners add
noise to their sensitive information before sending to the
data curator. This way, the assumption that the data curator
is trustworthy is no longer necessary since the data curator
is now containing differentially private information. When a
query arrives, the data curator will return query results with
additional noise or perturbation added.

Although all sources except the data owners now contain
differentially private information, query results will be less
accurate than the query results from global differential privacy
models. The reason is the additional amount of noise added
on each step outside from data owners to ensure differential
privacy. In the global differential privacy model, noise is
only added in query results. But, in local differential privacy
models, data curators also have noise added from each data
owner’s sensitive information.

As a result, models that implement local differential privacy
are mainly for aggregate query results, not finer results. For
example, one can query maximum or minimum and expect
reasonable accuracy.

2) Differential Privacy on Types of Databases: The notion
of differential privacy is based on the idea of neighboring
databases. However, different database structures have a
different definition of neighbors.

1) Tabular Data - The most common database structure
is RDBMS (relational database management system).
Data are stored in tables with each row providing data
specified by the schema. In this setting, statistics tend
to be aggregated on some combination of data between
the tables in a tabular format. A neighboring database is
defined as when either a single row (user) or a certain
column value in a row is different or nonexistent. In

most cases, these are equivalent. [4]

2) Graphs - Graph databases have become more popular
and algorithms for differentially private graph statistics
(such as triangle counting or degree distribution) have
been created. In this setting, a neighboring database is
defined as either the inclusion or exclusion of an entire
node or edge.

3) Documents - Document based databases have also
become popular as they are easier to scale with less
defined structure. While there may be specific notions
of differential privacy in certain structures of documents
(e.g. JSON), a general notion of differential privacy
for documents is using a “bag-of-words” approach
is popular in machine learning to transform text into
numerical data. [5]

III. PRIOR WORKS

Related works in the field of differential privacy include
statistical biomedical analysis, geolocation dataset analysis and
the U.S. Census Bureau.

In the biomedical field, Damson [6] has emerged as a strong
differential privacy system that optimizes the tradeoff between
high accuracy and low privacy costs. Damson allows for strong
privacy guarantees on common biomedical analysis tasks,
including histograms, data cubes, and other broad statistical
learning algorithms. It accomplishes these through query opti-
mization, which optimize the accuracy of the analysis results
under constraints of privacy budget usage. The optimization
operates under two techniques: Batch Query Processing and
Relative Error Minimization. In Batch Query Processing, a
query is processed as different sets of queries and their results
are combined to answer the original query. Under Relative
Error Minimization, Damson minimizes relative error instead
of absolute error of queries since the utility of small results
are more susceptible to added noise.

Another application of differential privacy is Microsoft’s
PrivTree system [7]. The PrivTree system incorporates dif-
ferential privacy to prevent accurate reconstruction of indi-
vidual’s geolocation from their dataset. PrivTree uses a data
manipulation technique that pre-processes the geolocation data
by first partitioning the location data into sub-regions based
on data point density and then applying location perturbation
to guarantee privacy while maintaining statistical accuracy.
This system can implement differentiallly private algorithms
on geolocation data usinf Laplacian noise and partitions.

Recently, the U.S Census Bureau has proposed investigat-
ing differential privacy for their datasets. Achieving desired
privacy guarantees on the Census data would involve building
algorithms to prevent reconstruction of individual data from
aggregate statistics. The goal is to apply differential privacy in
such a way that the confidentiality protections of their system
will not be compromised under complete or additional outside
information.



Our work is similar to previous works in that we are
analyzing the confidentiality of digital contact tracing through
the lens of differential privacy. We apply such techniques in
the setting of COVID-contact tracing to reduce the required
level of trust in existing parties of the protocol.

IV. THREAT MODELS

In this section, we will outline our proposed threat model.
Our threat model falls under a centralized architecture. There
exists a central party that controls the contact-tracing app, data
from other parties, and communication between parties. This
central party is trusted in storing sensitive data such as sex,
age, weight, etc. This party is also trusted in answering queries
on such data for diagnostic and analytical purposes.

A. Database Architecture and Differential Privacy

We considered two main database architectures, tabular and
graph-based. Tabular data would store individuals’ sensitive
information such as contacts between individuals in rows.
For a graph, each individual is a node which holds sensitive
information, and contacts are represented as edges.

For the aggregate statistics that we want to compute, tabular
data in a RDBMS is the most applicable. The statistics we
generally want to compute are on sensitive information of the
individuals rather than the actual contacts between individuals.
This setting also has the most work done on differentially
private statistics.

Due to the centralized nature of our model, we will also be
applying global differential privacy while non-perturbed data
is stored within a central database for queries.

B. Parties

The parties that participate in our centralized contact
tracing model are [3]:

1) Users: Individuals who are using contact tracing apps
are assumed to be honest but curious. They are trusted
to only upload real contact data and diagnosis, but may
try to determine the status of other individuals in the
network.

2) Tracing App Server/Database: The tracing app server
holds the database of individuals and is completely
trusted with the sensitive information of individuals.

3) Health Authority: We consider the health authority
to be honest but curious. They aim to authorize data
properly, but may try to learn information about certain
individuals from the tracing app server.

4) Hospitals: Hospitals only play a role in sending
diagnoses to individuals or the health authority and are
completely trusted to diagnose correctly.

The main difference between our threat model and prior
centralized contact tracing threat models is the level of trust

in the health authority. We reduce the level of trust required
in the health authority; we consider the possibility of the
health authority trying to learn information of individuals and
aim to remove that possibility.

V. DATA ANALYSIS UNDER DIFFERENTIAL PRIVACY

As mentioned in Section IV, contact tracing apps might
require or allow users to provide demographic information
when they register, such as sex, age, weight, and zip code.
In this section we will introduce ways in which the central
server can analyze this data and publish aggregate statistics
while maintaining differential privacy.

A. Histograms

Health authorities, as well as the general public, might be
interested in analyzing the distributions of certain demographic
variables, like age, over the space of people who have tested
positive. This can help them can identify patterns about
how the virus spreads to make more informed decisions and
recommendations. Thus, it would be useful to be able to
publish differentially private histograms over this data, without
leaking private information.

Histograms provide a summarized representation of a distri-
bution by separating the data into bins, which represent ranges
of values, and counting the number of data points that fall into
each bin. The structure of a histogram refers to the choice of
bins and what value ranges they represent. Typically, during
histogram construction, the structure is optimized for a given
number of bins in order to minimize the sum of squared error
(SSE) on unit-length count queries.

The definition of a differentially private histogram is that
adding or removing a single data point has only a negligible
effect on the output histogram, such that an adversary cannot
determine whether or not a certain data point is in the set.
Formally, a histogram publication mechanism Q satisfies ε-
differential privacy (ε-DP) if it outputs a randomized histogram
H such that

∀D,D′H : Pr(Q(D) = H) ≤ eε · Pr(Q(D′) = H)

for neighboring datasets D and D′, i.e. they differ by only
one data point [8]. An important note is that the structure
of the histogram can also leak information, since adding
or removing a data point can cause the optimal structure
to change [9]. Thus, there are two general strategies for
publishing differentially private histograms:

1) Add noise first to the raw data, then construct an
optimized histogram on the result.

2) Construct the histogram from the raw data, then add
noise to the transformed data (both the counts and the
structure).

For our application, we will focus on strategy 1 because
it produces better accuracy for short-range queries, which is



more important for analyzing the shape of the data distribution
[9]. We will apply the NoiseFirst method by Xu et al [9].

First, we compute a histogram on the original data with unit-
length bins, then add noise using the Laplace Mechanism (LM)
[10], which generates noise from a Laplacian distribution. The
result from the paper shows that it is sufficient to add noise of
magnitude 1/ε, i.e. Lap( 1

ε ), in order to achieve ε-DP. This re-
sults in a noisy sequence of counts, D̂ = {x̂1, x̂2, ...x̂n}. Then,
we optimize the histogram structure based on D̂; this can be
done using dynamic programming as proposed by Jagadish
et al [11]. Note that we are optimizing the structure based
on the noisy counts, so this will not leak any information.
Furthermore, because the Laplace noise is centered about 0,
when we merge bins in the optimization process the noise is
smoothed out, leading to better accuracy than standard LM.
This algorithm provides us with an ε-differentially private view
of the desired histogram.

In addition, Xu et al. [9] also suggest optimizing the value
of k, the number of bins in the histogram, by trying all possible
values from 1 to n (the range of the data) and choosing the one
with the lowest SSE. This can further improve the accuracy of
short-range queries to the histogram. Because this computation
might take a long time to run, there is a tradeoff between
accuracy and having up-to-date data. This tradeoff can be
tuned by testing fewer values of k, allowing the histograms to
be updated more frequently if needed.

B. Regression Analyses

Another possible analysis whose results are particularly
useful is regression analysis. With regression analyses, health
authorities can deduce correlations between attributes such as
age and mortality rate.

Unfortunately, performing regression analyses and satisfy-
ing differential privacy is non-trivial, as regression analysis
implies minimizing noise to reach an optimal solution, which
is at odds with injecting noise for differential privacy. Hence,
one of the challenges is deciding on the minimum amount
of noise for an approximately optimal result that satisfies
differential privacy.

For example, existing works on differentially private
regression analysis include:

1) Injecting noise into regression results

2) Analyzing synthetic points generated from the
distribution of original data points

But these methodologies produce inaccurate regression re-
sults because the amount of noise injected is often significant
enough to skew a minimization from its actual optimum.

For results that remain differentially private and as accurate
as possible, we will be using the Functional Mechanism (FM).
We will provide a general overview of FM below.

Functional Mechanism is a differentially private framework
for optimization analyses proposed in Zhang et al [12]. It

assumes our database D satisfies the following for each tuple
ti = (xi1, xi2, xi3, ..., xi(d−1), xid, yi):√√√√ l=d∑

l=1

x2il ≤ 1

yi ∈ [−1, 1]

If tuples do not satisfy the above assumption, we can
transform or scale our data before regression analysis.

FM relies on perturbing the objective function instead of
the results or input data. However, perturbing the objective
function has two issues:

1) One cannot inject noise into a function trivially and
expect a differentially private accurate result

2) Noise injections can yield unbounded objective
functions or remove minimums

To resolve the first issue, Zhang et al [12]. exploits the
Laplace Mechanism (LM) and the Stone-Weierstrass Theorem.
The former is a differentially private framework that adds
Laplace noise to any query output provided the output is
a real number. The latter provides a different polynomial
representation of the objective function to be minimized. FM
essentially converts an objective function f into its polynomial
representation f̄ with Stone-Weierstrass Theorem and adds
Laplace noise using LM to each of f̄ ’s coefficients. The
amount of noise injected is formulated as

Lap
(

2(d+ 1)2

ε

)
where Lap(x) is a random value drawn from a Laplace

distribution with zero mean and a predetermined scale s. ε
is the privacy budget used in defining differential privacy
between two neighbor datasets.

To resolve the second issue, Zhang et al [12]. propose either
rerunning FM until a bounded objective function is made
or applying regularization or spectral trimming. Proofs and
additional information on FM are included in Zhang et al [12].

C. Clustering

Health authorities, and the general public, might also want
to query the central database for aggregate statistics such as
the relative risks of COVID transmission among a certain age
group. Under this setting, the application of a differentially
private clustering algorithms will be useful in providing that
statistic and will maintain privacy guarantees on the publica-
tion of such statistics.

Clustering aims to form clusters of data points under some
notion of similarity within clusters and dissimilarity among
clusters. Each cluster should contain data points that are more
similar to each other than those in other groups. A simple
but powerful data analytic clustering algorithm is k-means



clustering, a popular unsupervised machine learning algorithm.
Specifically, k-means clustering applies k partitions to a set
of n data points, forming k clusters with the cluster centroid
serving as the cluster’s classification.

More formally, k-means clustering aims to minimize the
squared Euclidean distance between a cluster’s centroid and
all points within that cluster, which by extension minimizes
the within-cluster variance.

d(xi, xj) =

√√√√ d∑
k=1

((xi)k − (xj)k)2

Given n data examples (x1, x2, x3, ..., xn), k-means clus-
tering partitions n data points into k cluster sets C =
{C1, C2, ..., Ck} satisfying the objective:

arg min
µ

arg min
C

k∑
i=1

∑
x∈Ci

|x− µi|2

where µi is the mean of cluster Ci
The k-means algorithm operates under iterative refinement,
where the algorithm alternates between two steps to find a
convergence solution. The algorithm process is as follows:

1) Fix µ, assign each example point to the cluster with the
least squared Euclidean distance and optimize on C:

arg min
C

∑
x∈Ci

|x− µxi |2

2) Fix C, recalculate the centroid for each cluster and
optimize on µ:

arg min
µ

k∑
i=1

∑
x∈Ci

|x− µi|2

Calculate µi by taking the partial derivative of the above
expression with respect to µi and set it equal to zero.
Solving for µi will result in the update of

µi =
1

|Ci|
∑
x∈Ci

x

Under our setting, we would like the k-means clustering
algorithm to be ε-differentially private. To achieve this prop-
erty, the implementation of a differentially private k-means
clustering follows the algorithm proposed in PINQ [13]. The
main framework of this method is to implement component
aggregation operations such as Count, Sum, Average and
Median to be differential private.

The Count and Sum aggregation operators take ε
as a parameter and returns an accurate count of the
desired data with additive Laplace noise with density
function p(x) ∝ e(−|x|). Average and Median can be
implemented using differentially private mechanisms such as
the Exponential Mechanism [14].

VI. DISCUSSION AND FUTURE WORKS

A. Evaluation

We provide three useful methods of gathering aggregate
statistics in ε-differentially private manners for the central
tracing app server to send information to the health authority
or the general public. Any decisions then made after are
with differentially private data; thus no parties in the protocol
(except for the central tracing app server) should be able to
derive additional sensitive information about any individual
from the app server.

B. Future Works

In the future, we could consider applying notions of local
differential privacy to a decentralized setting and computing
aggregate statistics. We could also explore aggregate statistics
on contact tracing information rather than user information for
a graph database setting; for example, we could analyze the
degree distribution of a graph based on contacts. This could
be useful in a decentralized setting for sending automatic
updates to people giving approximate likelihoods for having
COVID.

VII. CONCLUSION

When the next pandemic will arrive is indeterminable but
whether it will arrive is a positive certainty. Given how much
more interconnected the world has become with the rise in
faster and affordable transportation, it takes only a single
mutation of a virus with the optimal attributes for mass
infection to trigger another pandemic. By then, technology
will be at least as better as now, and certainly contact tracing
apps will return again.

Although contact tracing apps provide health authorities
vital information to quickly contain local outbreaks, they still
face many privacy concerns from users. As discussed in our
threat model in Section IV, current architectures like the
centralized and decentralized models face risks such as data
misuse. In particular, some architectures assume a trusted data
curator. The assurance that aggregate data are only used by
“trustworthy authorities” is not a silver bullet to gaining the
society’s trust. Politicians and authorities can betray expecta-
tions by manipulating the semantics of their promises to get
away with certain usage on the curated private information.
So long as users are hesitant to use the apps, contact tracing
apps cannot reach their full potential.

Hence, we introduce differential privacy for aggregate
statistics to remove some of the reliance on trust between
users and health authorities. Namely, we have provided three
possible differentially private aggregate statistics that health
authorities can use for data analysis.
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