
HIVE:
A Blockchain Based Group Messaging Service

Christian Hwa
Massachusetts Institute of Technology

chwa@mit.edu

Kevin Yue
Massachusetts Institute of Technology

kevinyue@mit.edu

Abstract
With the advent of a privacy focused digital age, more and
more messaging services are providing end to end encrypted
applications. However, nearly all popular messaging plat-
forms are run by centralized organizations that not only pro-
vides a singular point of vulnerability but also may not have
their interest aligned with their users. We introduce HIVE,
a blockchain based group messaging service, that aims to
mitigate those issues. HIVE is a completely decentralized
messaging platform, thus there is no centralized target for ma-
licious users to steal or alter data. The blockchain based nature
of the HIVE also ensure the integrity of the data. By having
three different points of verification of data integrity including
the Ethereum blockchain, HIVE provides the guarantee that
a message sent across a network will not be altered. In fact,
HIVE also ensures the confidentiality of data by encrypting
all information being sent across the network. Ultimately,
HIVE provides a messaging platform where data integrity is
guaranteed, users cannot equivocate messages, and messages
sent across the network cannot be read by malicious users.

1 Introduction

Today, an increasing population is realizing the importance
of digital privacy. Most of our communication today occurs
online through various different messaging and social media
platforms. In many cases however, this communication is not
encrypted and stored on some company’s servers, meaning
that a security compromise could easily lead to the exposure
of sensitive message contents. Furthermore, because one
individual company/organization controls these centralized
servers, individuals that use their communication services
must trust them to not use their information and messages,
for benign or malicious purposes.

This revelation for some individuals has led to the re-
cent rise of messaging applications that provide end-to-end
encryption. With end-to-end encryption, the provider of the

communication system is not able to decrypt any messages
sent/received, even if they are stored on a centralized server.
Nonetheless, even with end-to-end encryption, privacy issues
remain. An eavesdropper could attempt to impersonate a
message recipient, so that messages are sent to their public
key instead of the intended target - a technique known as
a man-in-the-middle attack. Furthermore, there is still the
question of whether one using a centralized messaging
application should or can trust the entity that owns it.
Especially if the application code is not open source, many
things could be going on behind closed doors that users are
oblivious to. Finally, most messengers also require some form
of identifying information to sign up, a phone number for
example, which can be tied to a multitude of other personal
information about the user.

In response to these various concerns regarding cen-
tralized messaging applications, we propose HIVE, a
decentralized messaging platform built on top of the three
pillars that make up the Ethereum network: the blockchain,
Whisper [1] (peer-to-peer communication), and Swarm [2]
(decentralized file storage). In the following sections, we will
show how our system will be able to support confidential and
authenticated group messaging.

2 Project Scope

Our goal is to provide a high level system design for a
blockchain based group messaging service. As a result, we
make several assumptions in the design. We assume that the
network is operating in a steady state, meaning that we have
sufficient nodes to provide varied routes as well as ensuring
that the probability of all nodes on any given path is malicious
would be negligible.

1



3 Prior Work

3.1 Signal

Currently, one of the most used end to end encrypted group
messaging services is Signal. Signal provides end to end
encrypted communication between any two parties using
their application. As a result, the group messaging mechanic
that signal provides is central to the product they provide
to users. Regardless of the intended use case for group
messaging, it is an inherently social construct that requires

Signal provides group messaging functionality through the
notion of private groups: Signal does not retain membership
lists and group names. On a high level, group messaging
is significantly more complicated than direct messaging
because of the additional overhead needed to maintain the
necessary security properties desired. [3]. Most existing
messaging services store the group state and messages as
plaintext on their servers. While this simplifies things for
users using the service, this presents a singular point of
weakness for adversarial users to leverage. Adversarial users
can easily break into the servers that store group information
and extract all information regarding group message history
and state on the entire network. To combat this glaring
shortcoming, Signal designed their group message paradigm
with the notion that a group of n-individuals consists of n one
on one conversations with each individual in the group. That
way, they can leverage their existing security guarantees with
one on one communications to the group level.

Specifically, Signal approaches group messaging by
concentanting messages with a 128-bit secret that represents
the Group ID. In essence, clients never reveal which messages
are group messages and which messages are private messages.
Instead, clients tell each other what they need to know to
determine the destination of the message. However, this
messaging system does have shortcomings. One of the
primary issues is the existence of race conditions as well
as key dissemination and verification. If two users in the
same group try to update the group state at the same time, for
example adding somebody, changing the group description,
or kicking somebody, a race condition occurs as the network
cannot determinstically order the messages- resulting in
an inconsistent group state amongst all users. To address
the issue of verification and key dissemination, Signal uses
MAC-based key-verification anonymous credentials (KVAC)
[4]. Anonymous credentials were created to solve the issue
of the service needing to authenticate the group records
corresponding to the user making the request. However, the
main issue with such anonymous credential systems is that
the latency. Signal tackles this issue by improving upon the
KVAC system: group members are issued credentials based
on their unique identification (UID), and thus can prove to

the service they are a member by providing the authentication
credential as an encrypted group membership entry. In doing
so, the user does not reveal their UID or any other information
they wish not to be leaked. However, Signal’s KVAC scheme
hinges on the centralized nature of the key issuer and verifier.

The effectiveness of Signal group messaging paradigm
is obvious in the widespread use of the application. As a
result, we designed HIVE using Signal’s group messaging
architecture as a starting point, improving upon issues and
security flaws that we wish to guarantee to the user.

3.2 Blockchain
Blockchain technology is central to our system. Specifically,
the peer-to-peer network that manages the related blockchain
allows us to decentralize our system, which means our users
don’t have to place any trust in us like they would have to
with a centralized service like Signal. Furthermore, with our
decentralized system, we won’t be susceptible to downtime as
a result of servers going down, and we won’t be susceptible
to any country looking to censor our application - e.g., China
blocking Telegram.

Finally, the blockchain also allows for what might be
the most important feature of our system: auditing. With an
immutable public ledger of all transactions, it’s impossible
for someone to claim that they didn’t say something, as it’ll
be on the chain. With our system, we look to place the hash
of any message on a block that is going onto the blockchain,
so for auditing purposes, all that’s necessary is to compare
the hash of the purported message with the relevant hash on
the blockchain. Additionally, because each block is marked
with a timestamp, the timing of messages and when they
were sent are also immutable, which greatly benefits our goal
of supporting auditing.

3.3 Whisper Protocol
Whisper protocol is a peer to peer (P2P) communication
protocol designed for decentralized applications that is
built on top of the ethereum network. Whisper provides
privacy-preserving routing and messaging when passing
whisper messages, envelopes, across the network. Because of
the distributed nature of the system, envelopes are gossiped
across the network As a result, any node or user on the
network can receive messages; thus, the security relies
on the ability for only a receiver to decrypt the message.
Furthermore, denial of service attack robustness is provided
by the proof of work algorithm that supports the message
passing between nodes.

Whisper envelopes contain different payloads which
determine whether they are chat messages or group state

2



message updates. The payload of a specific message is
defined by a metadata header which contains flags for
different envelope configurations, called topics. The main
topics used by the whisper protocol are: partitioned topics,
contact code topic, negotiated topic, and negotiated topics.
Contact code topics are envelopes that begin communication
between two parties. For example, if user 1 wanted to
chat with user 2, user 1 would first send a contact code
message to user 2. Partitioned topics is a construct that
ensures information is not being leaked when sent across
the network. Because we rely on Signal’s group messaging
approach of sending a private message to each user in the
group, it becomes very easy to detect when two users are in
conversation with each other. Partitioned topics ensure that
multiple topics can be sent per envelope, thus balancing the
efficiency and privacy. Finally, negotiated topics are topics
where the receiver must listen to the topic. In general, for
user 1 to send a message to user 2, they must adhere to the
following flow:

• User 1 must wait for User 2’s client code topic

• User 1 then send a message on User 2’s partitioned topic

• User 1 can then receive messages from user 2

One thing to note is that Whisper automatically encrypts each
message with asymmetric encryption, ensuring that messages
that get sent to the transport layer are fully encrypted.

3.4 Swarm: Decentralized Storage
As mentioned in the introduction, our system is supported by
the three pillars that make up the Ethereum network. In this
section we outline the Ethereum Swarm system and how it
allows for decentralized storage.

Th Swarm system is necessary in our system to trans-
port large pieces of data, like videos or images. Currently,
Whisper is only able to handle messages that are less than
64k bytes in size, which means that for anything larger, we’ll
need to use Swarm. We’ll see shortly how the Swarm network
works to supply decentralized storage, but at a high level, for
large messages, instead of sending the actual message across
Whisper nodes, we need only send a Swarm hash that will
allow us to retrieve that data from the Swarm network later.

At a fundamental level, Ethereum Swarm is a system
of peer-to-peer networked nodes that cooperate to create a
decentralized service system. The keyword is "cooperate"
where it is very important that all nodes in the system
are incentivized to work together. First, we’ll explain how
Swarm stores data across its network, then we’ll explain how
Swarm’s incentive system keeps the network running.

When a file is uploaded to the Swarm network from
some node, that file is broken down into much smaller pieces
of data called chunks. These chunks have a fixed maximum
size of 4KB, and each chunk is individually hashed, where
that hash corresponds to the address of some other node in the
Swarm network. In this manner, Ethereum Swarm effectively
implements a "distributed content-addressed chunk store",
where content addressing means that the address of any
chunk is deterministically calculated from its content. The
addressing hash function takes in a chunk as input and
outputs a 32-byte long hash, where clients can use that hash
to retrieve the chunk.

Of course, this process of storing chunks at addresses
is only possible because nodes in the network dedicate
personal resources - diskspace, memory, CPU - to store and
serve chunks. When a node wants to retrieve data at some
address, it posts a request to the network with an address
of the chunk. That request gets forwarded throughout the
system until it reaches the desired address. Because the
Swarm network is implemented as a Kademlia network, the
topology of its graph ensures the existence of a path, as well
as a maximum number of forwarding hops required, that is
logarithmic in network size.

Additionally, Swarm’s incentive system allows it to be
self-sustaining, where all nodes in the network want to
cooperate. The incentive layer of the network uses deposit-
based storage incentives and allows trading resources for
payment. The figure below shows a retrieval process in action.

Figure 1: This figure demonstrates the retrieval process. In
this example, node D sends a chunk retrieval request that gets
forwarded through the network towards the chunk’s address
at node S. When the request gets to node S, the chunk is
sent back through all the forwarding nodes towards node
D. Whenever a node receives the chunk, a payment event is
triggered, where the receiving node pays the node it received
the chunk from. [2]

Uploading a chunk through the network follows a similar
forwarding and payment process.

Finally, when a user wants to retrieve the entire con-
tents of a file, a Swarm hash is used. A Swarm hash is the
means by which chunks can be combined to represent a larger
set, like a complete file. Essentially, chunks are arranged in

3



a Merkle tree, where leaf nodes correspond to chunks of
consecutive input data from the original file, and intermediate
nodes correspond to chunks which are themselves composed
of chunk references for all their children. At the very top of
the Merkle tree is the single root Swarm hash node, which
again can be used to retrieve the complete contents of a file.

Ethereum Swarm’s implementation of a distributed
content-addressed chunk store and incentive system allow it
to run as a self-sustaining decentralized storage system that
we will utilize in our own system.

4 Privacy Properties

The following section will outline the privacy properties that
we wish to guarantee for any user on our network. We aim to
provide the following guarantees to our users: lack of equivo-
cation, encrypted communication, and an indisputable history
of chat messages.

We ensure that users cannot equivocate messages by
signing each message with a signature. Each message sent to
the group is signed by a MAC, thus we asssume that if the
message can be decrypted and read, the origin of the message
is from a user in the group. Next, each message is also signed
with the sender’s key, this allows us to attribute the sender of
each message by virtue of the encryption key. We ensure that
all communication passed over the network will be securely
encrypted using the KEM-tree data structure. KEM-trees
allow us to efficientlydistribute and manage keys in the group.

Finally, we ensure that messages sent on the network
will be stored securely and will be essentially immutable
as message history can be verified by the three independent
components which make our network: the blockchain, a
sidechain, and distributed storage. The interconnected nature
of the three components allow for HIVE to identify anomalies
in the network efficiently.

5 System Design

5.1 System Overview

Figure 2: A high level diagram of HIVE. We can clearly
see the three components that make up our network: Swarm
distributed storage, sidechain nodes, and finally whisper

protocol and ethereum blockchain nodes

Our system is built upon three different nodes and
four different protocols. The key nodes that make the back-
bone of our system are the Whisper and Ethereum protocol;
nodes in the HIVE network must support both protocols. We
do this to ensure that whenever a message is sent over the
system, at least one node will update the blockchain. Each
Swarm distributed storage node is connected to at least one
other HIVE node. That way, the storage system can verify
what it stores with the Ethereum blockchain component.
Finally, we have sidechain nodes that are also connected to
HIVE nodes. Much like how the Swarm nodes can verify
their contents with the blockchain, sidechain nodes can also
verify their content with the mainchain. The sidechain stores
a digest of the message history. The three components allow
the HIVE network to quicly identify anomalies between
message history. If any one component’s data changes, it
can be resolved with the other two components. Figure 2
above highlights the components of the diagram as well as
any connections that exist between the components of the
network.

5.2 Users

5.2.1 Account Creation

When a user creates an account, they are given a public/private
key pair on the Ethereum blockchain, where their public key
will be their username. However, because these keys can be ex-
tremely long, complicated, and hard to remember, we also pro-
vide the ability to use the Ethereum Name Service (ENS) to
represent these long hashes with much more readable names.
Nonetheless, because a user’s account isn’t associated with
any personal information - phone number, IP address, bank
account, etc. - we are able to maintain user privacy.

5.2.2 User Actions

1. Adding contacts: A user can add contacts by learning their
public address or associated ENS name.

2. Send messages: Once a user learns another user’s
address/ENS name, they can begin a conversation with them.

3. Create groups: A user can also create groups on
HIVE. A much more in-depth analysis into how HIVE
accomplishes will be shown in the subsequent subsections.

4. Add/remove member from a group: Along with
creating groups, users can add and remove members from
any group they are in.

4



5.3 KEM-Trees

Figure 3: Illustration of a KEM tree. It is evident that leaf
nodes only know secret keys for any parent nodes along the
path to the root node of the tree

The KEM-tree data structure provides an efficient and
quick way of managing group keys regardless of whether
users are added, kicked, or when keys need to be refreshed.
KEM trees represent a left balanced binary tree of asymmetric
keys. From figure 3, we see that members of the group are
represented as root nodes and know all secrets of any parent
nodes in its path to the root node. We can formalize this as an
invariant of the data structure: private keys for any node is
only known by nodes in its subtree.

Because of this invariant, it gives us a simple repre-
sentation for key sharing with group messages. Subtrees of
nodes can represent subgroups within the groups, such as
admins or regular users. Furthermore, and arguably the most
important observation from the invariant is that the root node
represents the entire group. That way, we can use the root
node as our group key because all leaf nodes have paths to
the root node. Thus, the root private key is known to everyone
in the group at any given time.

All group level operations a user wishes to execute is
reflected in the KEM tree as follows. Let’s say user1 is in
group1 and wants to add user2 to the group. We first generate
a new leaf node with a new key. We then hash up to the root
node along the leaf-root path, updating any intermediate
nodes if necessary. We then run an update step to confirm the
changes on the tree. The update step entails generating a new
leaf key with the associated user requesting the update, and
then hashes up to the root node along the leaf-root path again.
All paths affected by this change then have new key values
associated with each node.

If user1 wants to remove user2 from the group, the
leaf node associated with user2 gets removed, and any secret
keys along the leaf-root path get reset to 0 as well. This way,
we ensure that the user2 has no information of the new group
key, as well as the inability to receive any new updates since
they are not part of the tree. Next, the update steps described
before is executed to derive a new group secret and update the
KEM tree so that its structure will reflect the removal of user2.

The tree structure of KEM-trees provides us asymp-
totic behavior that significantly outscales that of Signal.
Currently if a user leaves a Signal private group, or if new
keys need to be reissued it takes O(n2) time to execute.
This gets prohibitively slow as n increases. However, with
KEM-trees operations on the trees are bounded by O(logn).
Meaning that if we need to update keys for all n users in
our group, it only takes O(nlogn), providing significantly
asymptotic behavior when compared to signal.

5.4 MLS

Creating our system on top of the Messaging Layer Security
(MLS) protocol allows us to have efficient group messaging
[5]. Whereas the Whisper protocol is great for peer-to-peer
communication, the goal of the MLS protocol is to allow
a group of clients to exchange private and authenticated
messages. The MLS protocol takes advantage of the KEM
trees - described in section 4.3 - to manage group private keys,
as well as an Authenticated-Encryption with Associated-Data
(AEAD) encryption scheme to encrypt and decrypt group
messages.

The features that are necessary for effective group messaging
are: group initialization, adding/removing members from a
group, managing the private group key, and a method for
members of group to communicate through private and
authenticated messages. Let’s go through these features one
at a time.

5.4.1 Group Private Key

As mentioned in the KEM tree section, the root node of a
tree comprised of group members is the group key that every
member will have. Each member contributes to the KEM
tree, and the group key, through their individual leaf nodes.
Every time an operation is performed on the group (we call
this an epoch), the group key will be updated as well. An
operation is defined as adding a member, removing a member,
or a member updating its leaf secret and key pair. Again, in
each one of these instances, the group secret will be updated
as well to protect from compromises.

5



5.4.2 Private and Authenticated Messages

Now that all members in a group have access to a shared
group secret, messages among them can be encrypted
and authenticated through AEAD. It is important to note
that authentication in this case doesn’t guarantee that a
certain member sent a message; it only guarantees that a
legitimate member in the group sent the message. In order to
authenticate a message from a particular member, signatures
are required.

After the initial group secret is generated, every mem-
ber of the group creates their own sender Application Secret
that will be used for its own sending chain. Group members
must then only use that Application Secret once before
monotonically incrementing the generation of the next secret.
This is necessary to ensure Forward Secrecy. This means
that if an attacker were to get a member’s n+1th application
secret, they would not be able to derive their nth application
secret and associated AEAD key.

5.4.3 Group Initialization

Figure 4: This figure describes the process of group creation
in the MLS protocol. [5]

The process of group initialization is as follows: when a
user joins HIVE, they are designated a set of initialization
keys that are stored in a directory file - corresponding to the
directory column in figure 4 - on the Swarm network. If user
A wants to create a group with users B and C, he looks up
their initialization keys (which are public knowledge) on the
directory, then initiates the group initialization process. In the
manner laid out in the figure, he sequentially adds B then C
to the group. Each member in the group maintains a state of
the group, where the state keeps track of the group’s KEM
tree, the current epoch, and additional information about the
group is stored.

5.4.4 Adding/Removing Members to/from Group

Figure 5: This figure describes the process of removing a
member in the MLS protocol. [5]

The process of adding a member is very similar how
member A adds user C in figure 4. How removing a member
works in the MLS protocol is laid out in figure 5. In figure
5, user Z sends a message to group removing user B. Every
new member in the group (past group without user B) then
performs a delete operation, incrementing the group’s epoch
and modifying the group state.

5.5 Group Messaging

Figure 6: This figure highlights the relationship between the
sidechain, distributed storage, and the Ethereum blockchain.
This ensures that data is consistent between all three
components

When a user sends a message across the HIVE net-
work, it is first signed with the user’s secret key, ensuring
that the sender cannot equivocate. Users must use the
negotiated MLS ciphersuite to AEAD encrypt and decrypt
their ciphertext. Each message is signed as follows: group ID,
group epoch, group generation, sender, and the ciphertext.
Group epoc and generation is needed to determine the
associated state the KEM-tree should be in. As shown in
the MLS section above, group level operations update the
KEM-tree, thus this ensures that any malicious user that
was previously removed from the group cannot read any
post-removal messages even if they know the group ID.
However, a weakness of this encryption scheme still exists:
malicious users can see the frequency of messages and
payload size of each message being sent from one user to

6



another. While malicious users cannot decrypt any messages,
information can still be gained by the frequency and size of
the messages.

Once an envelope enters the HIVE network, it gets
passed from one HIVE node to another until the intended
recipient receives the message. At any point along the path,
any HIVE node has the ability to update the storage with the
new message. We use the Swarm storage network to store
the chat history. Once the Swarm updates the associated chat
history file by using the groupID, the new hash representing
the hash of the updated chat history gets sent back to a HIVE
node. Since our HIVE nodes also support the Ethereum
protocol, the Ethereum main chain gets updated with the
new hash. This represents the connection between storage
and blockchain as seen in figure 6. At the same time, HIVE
nodes are also connected to the sidechain. The sidechain
essentially stores a digest of messages sent between groups.
The side chain then occasionally checks in with the Ethereum
blockchain. This constitutes the connection between the
sidechain and the blockchain. If there is disagreement
between the blockchain and sidechain, this means that
either somebody changed the blockchain or a malicious user
changed the contents on the distributed storage system. In
either case, the sidechain acts as a canary and can alert users
in the group that their privacy has been compromised. As
we can see, the sidechain is connected to storage through
the blockchain. If at any point the sidechain doesn’t agree
with the blockchain, Swarm can be used to determine where
the compromise occurred. If the distributed storage system
receives a message that isn’t on the sidechain, users will
also be alerted. This could mean one of two cases: either
our HIVE nodes didn’t post to the sidechain, in which one
or more nodes may be compromised, or the group of users
are lying about what messages have been sent. Either way,
through the sidechain and blockchain, our system is robust
enough to identify such discrepancies and notify users of the
compromise.

Finally, if a user receives a message that isn’t in stor-
age, or the sidechain, then we know all HIVE nodes have
been compromised. In this case, the network needs to be shut-
down due to the possibility of all nodes being compromised.
Furthermore, our group messaging system is also robust
against malicious senders; however, the robustness hinges
upon a simple assumption: the probability that all nodes
along a Whisper envelope path are malicious is incredibly
low. With this assumption, we assume that at least one node
along the path will be a good node. Thus rendering any attack
by a malicious node or sender moot since the message sent
will be published on the distributed storage, sidechain, and
blockchain as well- preventing users from obfuscating the
origin of messages.

6 CIA Security Analysis

6.1 Confidentiality
Confidentiality refers to the protection of user data, ensuring
that data can only be read by authorized parties. This security
guarantee is the backbone behind HIVE. To do this, all
messages across the network are encrypted end to end using
asymmetric and symmetric key encryption. Furthermore, all
data stored on HIVE, the sidechain, and the blockchain are
all also encrypted.

We place a heavy emphasis on ensuring confidential-
ity is maintained throughout our network as highlight
sensitive messages may be sent across our platform, for exam-
ple messages regarding legal proceedings, or even business to
business communication. Consequently, confidentiality is a
critical aspect to the HIVE network.

6.2 Integrity
Integrity refers to a system’s ability to ensure that the system
and information is accurate and correct. The protocols and
systems we employ: Whisper, Swarm, and MLS ensure in-
tegrity in their individual contributions to the HIVE system.
Among the HIVE system itself, section 5.5 on group messag-
ing and the relevant figure 6 that highlights the relationship
between the Ethereum blockchain, distributed storage, and our
sidechains show that HIVE ensures data consistency among
all three components.

6.3 Availability
Finally, availability refers to a system’s ability to ensure that
services are available for users a vast majority of the time.
First, the decentralized property of HIVE means that availabil-
ity will not be impacted by any server failures or censorship.
Additionally, with the Whisper protocol, the latency of mes-
sages will be lower than if we used purely the blockchain,
where blocks are placed on the Ethereum blockchain every
13 seconds on average.

7 Future Work

While we have outlined a general framework for a distributed
blockchain based messaging service, there is still much work
to be done. Currently, malicious users can perform a man
in the middle attack to get information regarding message
frequency and message length. While they cannot decrypt the
ciphertext, the length of the message can also reveal a lot of
information. This can be addressed by padding messages to a
specified length before sending it over the network.

Another focus of future work can also be improving

7



upon the Whisper protocol. Whisper provides a low-latency
solution to peer to peer communication; however, it still
relies on gossiping for the Whisper envelope to reach its
intended target. As a result, it is inherently slower than
direct communication. Optimizations can result in a more
instantaneous messaging experience. Additionally, increasing
the 64K byte message limit can also be another point of
future work.

Finally, actually implementing this model will require
a significant amount of work. The specifications for HIVE
rely specifically on the steady state assumption, thus any
security concerns regarding a young network with few nodes
need to be explored. Furthermore, details regarding the
encryption algorithm and ensuring that the implementation
does not compromise the confidentiality guarantees of the
network need to be carefully reviewed.

8 Conclusion

Overall, HIVE offers an anonymous decentralized group mes-
saging solution to users who are looking for complete con-
fidentiality without the need to trust any centralized service.
Equally as important, HIVE guarantees data integrity, low
latency on messages, and provides the opportunity for the
auditing of messages. With the upcoming upgrades to the
Ethereum ecosystem - Ethereum 2.0, the improved scalability,
speed, and efficiency promise an exciting future for HIVE.

References

[1] Ethereum Foundation. Whisper. URL: https://eth.
wiki/concepts/whisper/whisper.

[2] Viktor Trón. The Book of Swarm. 2020.

[3] Signal. Group Chats. URL: https : / / support .
signal.org/hc/en-us/articles/360007319331-
Group-chats.

[4] Melissa Chase, Trevor Perrin, and Greg Zaverucha. “The
Signal Private Group System and Anonymous Creden-
tials Supporting Efficient Verifiable Encryption”. In:
(2020). DOI: https://eprint.iacr.org/2019/
1416.pdf.

[5] Network Working Group. The Messaging Layer Security
(MLS) Protocol. URL: https://tools.ietf.org/id/
draft-ietf-mls-protocol-11.html.

[6] Swarm Guide - 2. Architectural Overview. URL: https:
/ / swarm - guide . readthedocs . io / en / latest /
architecture . html # peer - management - hive -
kademlia.

[7] Silas Lenz. “Evaluation of the Messaging Layer Secu-
rity Protocol – A Performance and Usability Study”.
In: (2020). DOI: https://liu.diva-portal.org/
smash/get/diva2:1388449/FULLTEXT01.pdf.

8

https://eth.wiki/concepts/whisper/whisper
https://eth.wiki/concepts/whisper/whisper
https://support.signal.org/hc/en-us/articles/360007319331-Group-chats
https://support.signal.org/hc/en-us/articles/360007319331-Group-chats
https://support.signal.org/hc/en-us/articles/360007319331-Group-chats
https://doi.org/https://eprint.iacr.org/2019/1416.pdf
https://doi.org/https://eprint.iacr.org/2019/1416.pdf
https://tools.ietf.org/id/draft-ietf-mls-protocol-11.html
https://tools.ietf.org/id/draft-ietf-mls-protocol-11.html
https://swarm-guide.readthedocs.io/en/latest/architecture.html#peer-management-hive-kademlia
https://swarm-guide.readthedocs.io/en/latest/architecture.html#peer-management-hive-kademlia
https://swarm-guide.readthedocs.io/en/latest/architecture.html#peer-management-hive-kademlia
https://swarm-guide.readthedocs.io/en/latest/architecture.html#peer-management-hive-kademlia
https://doi.org/https://liu.diva-portal.org/smash/get/diva2:1388449/FULLTEXT01.pdf
https://doi.org/https://liu.diva-portal.org/smash/get/diva2:1388449/FULLTEXT01.pdf

	Introduction
	Project Scope
	Prior Work
	Signal
	Blockchain
	Whisper Protocol
	Swarm: Decentralized Storage

	Privacy Properties
	System Design
	System Overview
	Users
	Account Creation
	User Actions

	KEM-Trees
	MLS
	Group Private Key
	Private and Authenticated Messages
	Group Initialization
	Adding/Removing Members to/from Group

	Group Messaging

	CIA Security Analysis
	Confidentiality
	Integrity
	Availability

	Future Work
	Conclusion

