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Abstract

Multi-party computation (MPC) is a cryptographic idea that allows multiple parties to do computa-
tion with each party’s data, without revealing that data to other parties. In this paper, we collate several
fundamental, important, or interesting MPC primitives, explain the algorithms to achieve them, as well
as present a new perspective unifying many of these primitives together.
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1 Introduction

The goal of secure multi-party computation (MPC) is to study methods to compute functions with inputs
supplied by involved parties, yet keeping those parties’ inputs private from each other. A classic example of
this is “Yao’s millionaires problem” [12], in which two millionaires wish to determine who is richer without
revealing their wealth. Of course, the poorer person will learn that the richer person has at least as much
money as them and vice-versa, so it is not zero-knowledge, but rather no information is revealed beyond the
answer.

Beyond just hypothetical examples of determining who is richer, there are also practical applications of
MPC. A large real-world example was implemented in a secure, private auction in 2008 [2]. A very relevant
example today is contact tracing, in which each person wishes to know if any of their close contacts have
tested positive for COVID-19, without discovering who is positive. Many cities employ a team of contact
tracers who serve as an intermediate between a positive patient and their close contacts.

This resembles the ideal world model, in which there exists an incorruptible, trusted party who will receive
the private inputs and perform the computation, revealing only the final answer. This however still requires
divulging private information to a third party, which individuals may not desire. Rather, MPC protocols
typically work with the semi-honest model, in which all parties are assumed to honestly follow the protocol
agreed upon, but will use any information gained to deduce information about other parties [3].

Definition 1. An interactive protocol π that computes a function f(x1, . . . , xn) is secure against semi-
honest adversaries if there exist probabilistic polynomial time simulators S1, . . . , Sn such that for each i, the
simulator’s transcript is computationally indistinguishable from the view of the ith party:

Si(xi, f(x1, . . . , xn)) ∼=c Viewi(π(x1, . . . , xn))

for all x1, . . . , xn ∈ {0, 1}k.

In other words, no party learns any information beyond their private input and the public output. The
semi-honest model is a version of passive security. In particular, it has no protection against malicious
adversaries who actively provide false data or deviate from the agreed protocol. In all of the algorithms we
discuss below, there are many opportunities for parties to lie to gain additional information. The semi-honest
model precludes that. This is nevertheless a reasonable security model, as a group of friends may trust each
other to honestly follow the protocol in order to obtain the answer, while at the same time wanting to keep
their own information private.

In [11], Yao presents a way for two parties to securely evaluate a function in terms of boolean circuits,
known as Yao’s garbled circuit. Theoretically, this can encompass all reasonable algorithms. However, it
can be hard to convert arbitrary functions to boolean circuits, and the boolean circuit itself may be costly
in computation time or communication time. Therefore, it remains an interesting and relevant problem to
find efficient secure protocols for specific algorithms. In this paper, we will focus on two-party computation
protocols.

2 Background

Before we dive into specific primitives, it is first worth broadly explaining the background behind Yao’s
garbled circuit, as it both is historically important and motivates the general idea of how MPC can be
achieved.

2.1 1-2 Oblivious Transfer (OT)

The 1-2 oblivious transfer (or 1 out of 2 oblivious transfer, or OT for short) is a protocol that allows two
parties Alice and Bob to send a chosen message without revealing any extra information. Specifically, Alice
has two messages m0,m1, and 1-2 oblivious transfer allows Bob to learn one of these messages without
learning the other and without Alice learning which message Bob chose.
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To set up this protocol, we will follow the construction supplied by [6]. Let (Gen,Enc,Dec) be a public key
cryptographic protocol with plaintext spaceM. For our example, we will use RSA public key cryptography.
Recall that Gen outputs a public key (n, e) where n = pq is the product of two large primes and e is an
encryption exponent, as well as a secret key d. Encryption and decryption are defined as

Enc(pk,m) = me (mod n),

Dec(sk, c) = cd (mod n).

Thus, d should be chosen so that the scheme is correct.

For the actual scheme, we follow these steps:

1. Alice creates two messages m0,m1 as well as a instance of RSA, and publishes the public key (n, e).
Alice also publishes two random plaintexts r0, r1 ∈M.

2. Bob chooses a b ∈ {0, 1} corresponding to which message he would like, as well as a random plaintext
pad s ∈M. Bob sends over Enc(pk, s) + rb.

3. Alice computes
t0 = Dec(sk, (Enc(pk, s) + rb)− r0),

t1 = Dec(sk, (Enc(pk, s) + rb)− r1).

tb will equal s, while the other produces gibberish, but Alice doesn’t know which.

4. Alice sends back t0 +m0 and t1 +m1.

5. Bob calculates mb = tb +mb − s, since tb = s. Bob cannot deduce any more information because t1−b
is gibberish to him since it uses the Dec function.

2.2 Yao’s Garbled Logic Gates

OT provides the fundamental primitive needed to construct the key ingredient of Yao’s garbled circuits:
garbled logic gates. Alice and Bob each have a bit, and the game is for them to try to find the evaluation
of these bits on a logic gate without revealing any extra information about the other person’s bit. If we can
construct such a protocol for a set of universal logic gates, then the immediate consequence is that we can
find the output of any function taking two binary inputs from Alice and Bob respectively without leaking
any extra information, as a set of universal logic gates by definition can construct any function. This is the
idea behind Yao’s garbled circuit. [11]

Since NOR by itself is a universal logic gate, we will construct this gate in a privacy preserving manner.
In fact, the following construction works for any binary input gate.

The protocol consists of two jobs: Alice, the Garbler, and Bob, the Evaluator.

1. They start with a table showing the inputs and outputs of the NOR gate:

0 1
0 1 0
1 0 0

2. Without loss of generality, assume Alice’s bit determines the row and Bob’s the column. Alice then
replaces her bits, Bob’s bits, and the output bits with random “garbled” versions:

A0 A1

B0 C1 C0

B1 C0 C0

where A0, A1, B0, B1, C0, C1 ∈ M. Bob doesn’t know which of these correspond to 0 and which
correspond to 1.
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3. Alice then creates an encryption algorithm (Gen′,Enc′,Dec′) public to everyone that takes as seed to
Gen′ a pair of messages in M. For Aa, Bb, she generates a key skAa,Bb

and uses it to encrypt the
corresponding output bit: 

Enc′(skA0,B0 , C1)

Enc′(skA0,B1
, C0)

Enc′(skA1,B0
, C0)

Enc′(skA1,B1
, C0)

She scrambles the four entries to make it not obvious which line corresponds to which output square.

4. The stage is now set for Bob to evaluate the circuit. Bob first asks Alice to give him the garbled value
Aa corresponding to Alice’s bit a.

5. Bob then asks Alice to give him the garbled value Bb corresponding to Bob’s bit b. However, since
Alice doesn’t know b, Bob must ask for it with OT.

6. Finally, Bob computes skAa,Bb
and decrypts each of the four table entries. Assuming that (Gen′,Enc′,Dec′)

is set up such that trying to decrypt a ciphertext with the wrong key will give an invalid output ⊥,
exactly one of the four entries will give a valid decryption, and that decryption will exactly the garbled
version of the output bit of the NOR gate.

As a note, the above protocol is for gates where Bob has an input. When Bob doesn’t have an input,
OT isn’t even needed!

In any case, given any arbitrary function, Alice and Bob can dissect it into NOR gates, and apply the
protocol for each gate to arrive at a final set of garbled bits as output. Through some commitment scheme,
Bob can reveal these garbled bits to Alice and Alice can reveal the true values behind them, giving them
both the function output without either knowing any extra information about the other’s input.

Here, we see a main idea of two-party computation: asymmetry of roles. As we will find out, this theme
will persist in the solution of many MPC primitives.

3 Primitives

We have seen that garbled circuits are able to implement a private version of any function. For simple
functions that can be easily enumerated by a table of inputs and outputs, or are easily represented by
a circuit, Yao’s method works well. However, in practice converting arbitrary functions to circuits is often
difficult and inefficient, especially more elaborate algorithms. For example, the problem of finding the shortest
distance between two points on an arbitrary graph is not easily translated into a circuit, but there are other
efficient algorithms for it [3]. In general, a direct garbling approach often involves directly enumerating
all possible inputs. Therefore, it remains an interesting and problem to find efficient privacy-preserving
algorithms for more complicated problems.

In the previous section we demonstrated OT as a primitive used in Yao’s garbled circuits. Now we will
present a collection of additional primitives found in in the literature. There is no universal definition of
what constitutes a primitive. For the purpose of this work we mean a subroutine or building block that is
frequently used in larger algorithms. We begin with several basic primitives, many of which can be efficiently
solved directly via garbled circuits, and then present some more involved primitives where garbled circuits
are less efficient.

3.1 Integer Comparison

Yao’s millionaire problem is a specific case of the following general problem.

Problem 1. Given two n-bit integers a and b, determine whether a < b, a > b, or a = b.

Yao’s original solution in [12] is extremely inefficient, with a communication complexity that grows
exponentially in the number of bits. However, that was four years before Yao published his garbled circuits.
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Indeed, this problem is well-suited for garbled circuits. Specifically, the problem of comparing two n-bit
integers is precisely solved with a digital comaparator circuit. The number of gates required for an n-bit
comparator grows as O(n).

3.2 Minimum and Maximum

Problem 2. Given two n bit integers a and b, determine min(a, b) (resp. max(a, b)).

This problem can similarly be solved with a garbled circuit. Starting with a digital comparator, the
circuit can be extended to return the minimum (resp. maximum) of the numbers. The number of gates here
also grows as O(n), so this is an efficient solution.

3.3 Bitwise OR

Problem 3. Given two n bit sequence a and b, determine a ∨ b.

First, we observe that not only this problem can be solved with the garbled circuit algorithm, but this
solution is also efficient. This is because we can perform OR on each bit independently, and each bit requires
only one gate operation, therefore only 1-out-of-2 oblivious transfer.

Alternatively, we can compute bitwise OR using a semantically secure homomorphic encryption scheme.
For example, based on ElGamal scheme, we construct the following protocol:

1. Alice generates their secret key k and public key q, g, gk as in standard ElGamal scheme.

2. Alice sends to Bob ciphertext cAn = (gr, gan · gkr).

3. Upon receipt of cAn = (αn, βn), Bob randomly pick r′n, and send to Alice cBn = (α
r′n
n , gbn·r

′ · βr′n
n ).

4. Alice decrypts cBn using their private key. Alice declares the n-th bit of the result to be 0 iff cBn
decrypts to 1.

The secrecy of a follows from the semantic security of the homomorphic encryption scheme. Suppose an =
1, the secrecy of bn then follows from the same semantic security, which prevents Alice from distinguishing
gr

′
and g2r

′
without knowing r′.

3.4 Set Union

Problem 4. Given two sets A and B, determine A ∪B.

The privacy aspect of this is that A∩B remains hidden to both parties. That is, if Alice sees an element
in e ∈ A ∪B not in A, she knows e ∈ B, but if she sees an element e ∈ A, then she does not know whether
it is in B as well.

There are many privacy-preserving algorithms for set union, such as those presented in [3]. All of these
assume a finite universe U of possible elements. Since the universe is finite, parties can agree on a canonical
ordering of the elements. The efficient algorithm we present will use the privacy-preserving min function as
a primitive.

1. Alice and Bob agree on an ordering of the universe U . Also agree on some representation of ∞ larger
than any element in the universe.

2. Initialize S = ∅.

3. Alice selects the minimal element a ∈ A, and Bob the minimal element b ∈ B, or ∞ if their set is
empty.

4. They apply the privacy-preserving protocol for min(a, b) and append that to S.

5. If min(a, b) ∈ A, Alice removes it from her set and chooses the next minimal element. Similarly, if
Bob’s set contains min(a, b), he removes it and moves to the next minimal element.
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6. Repeat steps 3–5 until min(a, b) =∞, at which point S = A ∪B.

This has communication and computational complexity O(|S| lg |U|), since each element can be repre-
sented in lg |U| bits, each iteration has complexity lg |U| from the privacy-preserving minimum, and there
are |S| total iterations.

We note that this is an instance where we have an algorithm that is faster and more efficient than directly
using circuits (even though we do indirectly use circuits through the min primitive). In particular, a direct
garbled circuit/table approach involves |U|-bit inputs for all possible subsets of the universe, which will take
at least O(|U|) gates. For very large universes of elements, where |S| � |U|, we have |S| lg |U| � |U|, so the
algorithm using the min primitive outperforms the direct-garbling approach.

3.5 Set Intersection

Problem 5. Given two sets A and B, determine A ∩B.

The privacy aspect of this is that the symmetric difference A∆B remains hidden to both parties. That
is, each party knows that the elements in A∩B are common to both parties, but they do not know the other
elements in the other party’s set.

There are also many privacy-preserving algorithms for set intersection, and this remains an active problem
of research [8]. As with set union we consider a large but finite universe of possible elements U . We present
the standard, “naive” algorithm:

1. Alice and Bob agree on a cryptographic hash function that is one-way and collision resistant.

2. They apply the hash function to each element of their own set.

3. They share all their hash values and compare which ones are equal. The elements corresponding to
the common hash values form the intersection.

The security of this protocol relies on a large universe U and a sufficiently-close-to-ideal hash function.
In particular, if U is too small, then both parties can just test all elements and compare to the other’s hash
values. Various improvements on this naive algorithm lessen the importance of these assumptions. Modern
approaches include replacing the hash function with a public-key encryption, or using fully homomorphic
encryption [4], or using oblivious transfer instead [8].

It is worth mentioning that while set intersection is a primitive that can be used in larger algorithms, it
also has direct applications by itself. For example, it can be directly applied to networks of people, be it for
finding common friends, for contact tracing, or for other scenarios.

3.6 Summation

Problem 6. Given n elements an of a field F , determine
∑

n an.

We present a protocol for this problem based on Shamir’s secret sharing scheme [5]. The key observation
is that Shamir’s secret sharing scheme allows one to compute any linear combination of secrets.

1. The n-party agrees on n public random element Xn.

2. Each party Pi chooses a random polynomial pi of degree n− 1 and constant term ai.

3. Each party sends each other party Pj their share pi(Xj)

4. Each party adds up all the shares it receives from other parties, and sends this result Ii to all other
parties.

5. Now each party has the value of the polynomial p =
∑

n pn at all Xn, they can determine the constant
term of p, which corresponds to

∑
n an
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The security of this protocol relies on the security of Shamir’s secret sharing scheme. Because for each
party Pi, all other parties only get hold of n − 1 shares of its secret value an, it is impossible for them to
recover an even if they conspire collectively. [9]

3.7 Applications to Bigger Problems

We selected the above list of primitives based on their fundamental nature as well as usage in other, larger
problems. We have already seen some primitives applied others. For example, oblivious transfer was used to
construct garbled circuits, garbled circuits were used for many of the simpler primitives, and the min primitive
was used for set union. Here we provide a list of examples of larger applications of these primitives, along
with their references for implementation details which are not the focus of this work.

• All pairs shortest distance in a graph [3]

• Single source shortest distance in a graph [3]

• Unlabelled graph construction from partial information [7]

• Decision tree inference using ID3 construction [5]

There are also various higher-level domain-specific MPC primitives which deviate in style from our
collection. A prominent example of this is the vector dot product, and a couple implementations are provided
in [1]. The dot product proves to be very useful in many fields, including data analysis, machine learning,
and computational geometry. We provide a similar list for applications of the dot product.

• Determining whether a vector dominates another [1]

• Determining whether a point is in a polygon [1]

• Determining whether two polygons intersect [1]

4 Lattice Meet and Join

We note that many of the primitives presented in the prior section are special cases of a mathematical object
known as order lattices. These lattices (not to be confused with group-theoretic lattices) generalize many
useful structures such as sets, real numbers, topological spaces and program semantics. Therefore, there has
been both theoretical and practical interest in studying lattices. In this section we present the mathematical
facts about lattices following [10] and reframe our existing primitives in the framework of lattices.

Definition 2. A partially ordered set (poset) is a set S with an ordering relation ≤ on some (not necessarily
all) elements satisfying the following properties:

• x ≤ x for all x ∈ S.

• If x ≤ y and y ≤ x, then x = y.

• If x ≤ y and y ≤ z, then x ≤ z.

Several of the structures we studied are posets. For example, the integers with their natural ordering
form a poset (in fact a totally-ordered set). The power set (set of all subsets) of a given set U also form
a poset, where for two subsets x, y ∈ P(S), we define x ≤ y to mean x ⊆ y. This is an example of a true
partial order, since there exist sets x, y ∈ P(S) where neither x ⊆ y nor y ⊆ x is true; that is, they are
incomparable elements under the subset ordering.

Definition 3. A lattice is a poset such that for every two elements, there exists a unique least upper bound
and a unique greatest lower bound. These are called the meet and join, respectively.

There is also a more algebraic and axiomatic definition of lattices.
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Definition 4. A lattice is a set S equipped with two binary operations ∨ (join) and ∧ (meet) that are
commutative, associative, and satisfy the absorption laws

x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x

for all x, y ∈ S.

These two definitions are equivalent. Starting from poset definition, one can prove the properties in the
axiomatic definition. Starting from the axiomatic definition, one can reconstruct the poset by defining the
ordering relation as a ≤ b ⇐⇒ a = a ∧ b. We leave further mathematical details to [10].

Both of our aforementioned posets are also lattices. In fact, the lattice join and meet operations ∨,∧
on a lattice can be seen as a generalization of the set union and intersection operations ∪,∩. The following
Hasse diagram shows an example of a poset on the subsets of a 3-element set, with upward edges indicating
the inclusion relation.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

A number of the previously described primitives are special cases of the MPC problem for lattice meet
and join.

• The minimum (maximum) problem is the lattice meet (join) problem on integers, equipped with the
natural total order.

• The set union (intersection) problem is the lattice join (meet) problem on power set lattices.

• The bit OR (AND) problem is the lattice join (meet) problem on the Boolean lattice {0, 1}n.

(1, 1, 1)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 0)

Note that the Boolean lattice {0, 1}n is in fact isomorphic to the lattice on n-element subsets, where a 1
bit in the ith position corresponds to including the ith element in the subset, and a 0 bit corresponds to not
including the element.

Given all these connections, it is natural to pose the following new problem.

Problem 7. Given a lattice L and two elements a, b ∈ L, determine a ∨ b (resp a ∧ b).

We can also ask the more general n-MPC problem for lattice meet/join: Given n parties, with i-th party
holding a private element pi in a public lattice L, compute the meet/join, or some combination thereof, of
p1, p2 · · · pn in a privacy-preserving manner.
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This is a very general problem that encompasses nearly all of the aforementioned primitives. As with
any MPC problem, it is hypothetically solvable via Yao’s garbled circuits, though would not necessarily be
efficient. Any improvement over the generic method would have ramifications trickle down to all specific
cases of lattice meet/join, making this problem a worthwhile one to pose. At the same time though, its
generality also causes its difficulty.

Another source of difficulty is in representing the lattice inputs, even for non-privacy-preserving algo-
rithms. For small lattices, it may be reasonable to specify the entire lattice as a graph for its Hasse diagram,
from which one may apply graph algorithms. However, general lattices of interest are much larger, in which
case specifying the entire graph is impractical. Mathematiaclly, lattices oftentimes span infinite or continuous
domains (which may get discretized for input to computers).

Because of this, in general it is more fruitful to specify the meet and join functions via the axiomatic
definition as opposed to the poset definition. While the n-MPC problem for lattice meet/join is a very
general problem, we observe that studying the 2-MPC case is unlikely to give any useful results. This is
because the meet and join can be any two arbitrary computable functions satisfying the axioms. However,
given two arbitrary computable functions, we cannot possibly do better than general 2-MPC protocols. For
this case, the only improvements would come from applying the axioms to restrict what kinds of functions
are possible, yet we’ve seen the wide generality of functions and lattice that are possible.

On the other hand, it’s meaningful to ask given a protocol for 2-MPC lattice meet/join (either the general
garbled-circuit protocol, or an efficient specialized protocol), can we derive a protocol for the corresponding
n-MPC lattice meet/join? We expect it is possible to do better than the most general case because of the
axiomatic properties lattices satisfy, particularly absorption for reducing combinations of 3 terms. If the
answer to this problem is indeed positive, we can derive various efficient n-MPC protocols because efficient
2-MPC protocols are known for a wide range of lattice meet/join problems. Due to the complexity of n-
MPC problems and the limited scope of this work, we do not give an answer but rather pose this as an open
problem for the MPC research community.
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