
EVALUATING THE THEORETICAL SECURITY OF VARIOUS
OPEN-SOURCE PASSWORD MANAGERS

KEVIN FANG, JASON KUNG, NADIA WAID, AND BRANDON YUE

Abstract. We stress test and evaluate three well known open source password managers
for security and ease of use: KeePass, BitWarden, and TeamPass. Specifically, we analyze
and report potential vulnerabilities in the programs’ password generation, data manage-
ment, and autofill feature. We also surveyed 24 people on how difficult each of the three
password managers were to use as well as what they value in password managers. We
found that people generally valued secure storage and easy access to their passwords over
other security features.

Contents

1. Introduction 2
2. Background 2
2.1. KeePass 2
2.2. BitWarden 3
2.3. TeamPass 3
3. Password Generation 3
3.1. Password Generation Options 3
3.2. RNN Analysis 3
3.3. Randomness Tests 6
3.4. Recommendation 8
4. Password and Information Storage 8
4.1. Introduction 8
4.2. KeePass 8
4.3. BitWarden 9
4.4. TeamPass 9
4.5. Comparison of Password Storage Schemes 9
5. AutoFill 10
5.1. Introduction 10
5.2. KeePass Autofill Analysis 10
5.3. Bitwarden Autofill 10
5.4. Comparison of Autofill Functions 11
6. Password Manager Usability 11
6.1. General Survey Results 12
6.2. Usability of Bitwarden 12
6.3. Usability of KeePass 12
6.4. Usability of TeamPass 13
6.5. Password Manager Recommendations 13
7. Related Work 13

1

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS2

8. Conclusion 14
9. Acknowledgments 14
References 14

1. Introduction

As people start to put more personal information onto the web, they increasingly expect
better security and accountability from the applications they use. Open-source password
managers have become an appealing solution to both of these issues, as they entail more
frequent security updates made by known contributors – they can be checked by anyone for
security vulnerabilities and violated privacy policies, making open source password managers
ostensibly more trustworthy than closed source alternatives. Three such password managers
include KeePass, BitWarden, and TeamPass which each have specific applications. KeePass
is used for local storage and generation of passwords, BitWarden is used for local genera-
tion and online storage of passwords, and TeamPass has similar functionality to KeePass
but is made for organizations rather than individuals. While their intended functionality is
different, each of these password managers can be evaluated in much the same way: how
random passwords are, if we can tell the difference between passwords from different pass-
word managers, how secure the data handling and storage schemes are, if the auto fill feature
is secure, and how usable their interfaces are. While the first three features under scrutiny
directly pertain to security, we believe the last one to be as, if not more, important than
the prior three because increased accessibility will naturally increase security as users of
different technical backgrounds secure their passwords. We’ll be looking specifically at open
source password managers, such as KeePass, TeamPass, and Bitwarden; these applications
should not require any special permissions, as they all are/can be self-hosted. We will be
analyzing the source code and extracting relevant submodules to test directly. We will also
look into relevant papers the publishing team or security analysts have put out within the
last five years.

Our paper will mainly consist of analyzing the listed password managers and our attempts
at breaking the security of the functions listed previously: password generation, stored data,
and autofill.

2. Background

2.1. KeePass. KeePass is a free, open-source password manager designed for Windows but
with support for Linux-based operating systems through external tools or various extensions
of KeePass [8]. First released in November 2003, KeePass has been continuously updated up
to the publishing of this paper and has garnered widespread acclaim for having security on
par with that of paid alternatives [8]. KeePass does not require the users to directly install
to the OS, has auto-type/drag-and-drop accessibility features, and also securely handles the
Windows clipboard by clearing it after the clipboard is used for password transfer.
KeePass operates on a single user’s desktop with no connection to their browser – it operates
solely through their system, unlike password managers like the extension connected to Google
Chrome. KeePass can be used by regular users, however we believe its more accessible to
developers, or users more familiar with code, as its functionality often requires more effort
on the user’s part than other password managers.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS3

2.2. BitWarden. Bitwarden is a free, open-source password manager that offers a varety
of password vault applications, like desktop apps (for both Windows and Linus OS), browser
extensions, mobile apps, and more. Bitwarden first released a limited set of these applications
in August 2016, and since then has continuously increased their scope. US News & Report
named it "Best Password Manager" in January 2021[3]. With many of the same features as
KeePass (including frequent software updates), we chose to evaluate Bitwarden because of
its increased reach and accessibility across more platforms.
Bitwarden is also the only application we’re evaluating that offers actual pricing tiers with its
cloud storage capabilities – therefore, we are of the opinion that Bitwarden is more targeted
towards businesses and consumers.

2.3. TeamPass. TeamPass was again selected for being free and open-source, but it cru-
cially differs in that it allows for password management for groups of individuals, differing
in scope from the prior two password managers. Each user has defined access rights that
allow them to only access appropriate passwords and data[5].

3. Password Generation

Along with storing passwords, KeePass, BitWarden, and TeamPass can also generate
passwords for the user. This works by having the user specify certain requirements for
generated passwords and the password manager then randomly generates a string with the
user-defined restrictions. For example, users can specify a password length and a set of
characters to include in the randomly generated string. The strength of the generated
passwords is important to many users – around 50% of responses in our password manager
usability survey (section 6) listed "Generating strong passwords" as a highly valued feature.

In our analysis, we will define a "strong password" as a password whose characters appear
to be drawn from a uniformly random distribution. In other words, the "stronger" a pass-
word manager’s password generation is, the closer the characters in its generated passwords
appear to be drawn uniformly at random.

To analyze the strength of KeePass, BitWarden, and TeamPass’s password generation, we
generated 100,000 passwords from each program with password lengths of 16 and character
sets including alphanumeric and special characters.

3.1. Password Generation Options. Each of the 3 open source password managers (as
well as other proprietary password managers on the market – Lastpass + 1Password), has
the ability to generate a password with certain parameters and character sets. All password
managers were able to generate variable length passwords. However, all password managers
except for Keepass had limited options in choosing the security component of each generated
password. Both Bitwarden and Teampass had only one "special" character option, and the
actual character set were only a subset of what Keepass had. Bitwarden also has the ability
to specify the minimum amount of characters from each character set (minimum numbers
or special characters in the password). All 3 password managers allow for users to remove
"ambiguous" characters (such as O and 0, l and 1), however each password manager has its
own set of ambiguous characters.

3.2. RNN Analysis. We used recurrent neural networks (RNN) to analyze the generated
passwords. RNNs can learn underlying patterns in sequences, so we wanted to see if we can
use them to learn any patterns between the characters of generated passwords.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS4

Figure 1. BitWarden (left) and TeamPass (right) Password Generation Screens

3.2.1. Password Manager Classification. We designed an RNN to see if we can tell which
password manager different passwords were generated by. In this task, because we have
3 password managers, we expect the model to achieve a classification accuracy of about
33%, meaning the model would be guessing uniformly at random for each password. If our
model can achieve an accuracy significantly higher than 33%, it could imply that there are
underlying patterns in the generated passwords that differ between each password manager.

The structure of the RNN was a LSTM model with standard dropout, linear parameters.

PasswordManagerClassifier(
(embedding): Embedding(94, 200)
(lstm): LSTM(200, 500, num_layers=5, batch_first=True, dropout=0.3, bidirectional=True)
(dropout): Dropout(p=0.3, inplace=False)
(lstm2): LSTM(200, 500, num_layers=5, batch_first=True, dropout=0.3, bidirectional=True)
(dropout2): Dropout(p=0.3, inplace=False)
(linear): Linear(in_features=1000, out_features=3, bias=True)

)

Figure 2. Password Manager Classifier Model Structure

Originally our tests concluded that the model had a 97% accuracy in predicting which
password manager generated each specific password. However after more careful analysis
it was determined that the model essentially learned which characters were unique to each
password manager, giving it a high probably chance of correctly predicting the correct
password manager. For example, if KeePass is the only password manager that includes ;
in its character set, the model would be able to classify passwords that have a ; as coming
from KeePass with high probability.

We then obtained another 100,000 passwords from each password manager on only al-
phanumeric characters to standardize the character sets used by each password manager.
The model only achieved a 33% accuracy in the prediction, thus confirming that when all the
password managers use the same character sets, it is impossible to distinguish passwords
from any two password managers using our RNN. This could imply that with standard-
ized character sets, there are no underlying patterns within generated passwords that differ
between the KeePass, BitWarden, and TeamPass.

However, due to the increase in the special character requirements, password generators
are less likely to use the same character sets because they offer different sets of special
characters. This could be a potential security vulnerability where, if an adversary was
able to obtain plaintext email/passwords combinations, they would be able to learn which

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS5

password manager (if at all) users were using. The adversary could then create a focused
channel of attack, either at the specific manager or by prioritizing which users to go after
should another vulnerability in a specific password manager be revealed.

3.2.2. Password Character Prediction. We also used RNNs to see if we could predict char-
acters that are generated by each password manager. The model would take in a sequence
of characters that were generated by the password manager and predict the next character
that would be generated. In this task, we expect the model to achieve a prediction accuracy
of 1

|charset| for each password manager. This would mean that at best, the model would be
predicting characters uniformly at random over the entire set of possible characters. If the
model can achieve an accuracy significantly above this for a specific password manager, this
could imply that there is some underlying pattern between the characters of a password
generated by the password manager. For example, if the model can achieve above expected
prediction accuracy for KeePass passwords, this could imply that KeePass’s password gener-
ation has some pattern that can be learned to allow an adversary to guess passwords better
than guessing at uniformly random.

The structure of this RNN was a bidirectional LSTM with dropout and linear layers.

PasswordPredictor(
(embedding): Embedding(94, 500)
(lstm): LSTM(500, 500, num_layers=5, batch_first=True, dropout=0.2, bidirectional=False)
(dropout): Dropout(p=0.2)
(linear): Linear(in_features=500, out_features=94)

)

Figure 3. Password Predictor Model Structure

Running the prediction model on passwords from each password manager, we observed
the results in the tables 1 and 2.

Table 1. Character Prediction Accuracies (Non-Standardized Charsets)

KeePass BitWarden TeamPass

Expected Accuracy 0.011 0.014 0.012
Test Accuracy 0.011 0.018 0.013

Table 2. Character Prediction Accuracies (Standardized Charsets)

KeePass BitWarden TeamPass

Expected Accuracy 0.016 0.016 0.016
Test Accuracy 0.016 0.019 0.017

We can see that when we run the prediction model on KeePass passwords with the non-
standardized (alphanumeric and special characters) and standardized (alphanumeric char-
acters only) character sets, our test accuracy is the same as our expected accuracy. For
TeamPass passwords, we notice that our test accuracy is greater than expected by 0.001 in

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS6

both cases, but this difference is relatively small and may not be significant enough to indi-
cate any underlying patterns in the generated passwords. However, for BitWarden, we notice
that our test accuracy is greater than expected by 0.004 and 0.003 for non-standardized and
standardized character sets respectively. This difference is relatively large, and may indicate
that BitWarden password generation does not necessarily choose characters in a password
from uniformly random.

Figure 4. Character frequencies of KeePass (left), TeamPass (middle), and
BitWarden (right). In each graph, characters from left to right are in the
order of special, numbers, and letters.

We can get further insight on our observed prediction accuracies by looking at the frequen-
cies at which each password manager used each character throughout all 100,000 generated
passwords (fig. 4). KeePass and TeamPass both have a relatively flat distribution, meaning
throughout all the generated passwords, each character was chosen with approximately the
same probability (uniform). However, BitWarden’s distribution has 3 sets of frequencies,
with special characters being chosen with the greatest probability, numbers being chosen
with the second greatest probability, and letters being chosen with the lowest probability.
This could explain our prediction accuracies where BitWarden was the only password man-
ager that could achieve an accuracy significantly higher than expected – when we look at a
large set of passwords, BitWarden does not generate characters uniformly at random so an
adversary could guess characters in the generated passwords with greater probability than
uniform.

After analyzing the source code within Bitwarden, we found that even though users can
require all passwords to not have a minimum requirement of symbols and numbers, if the
user selects the ’symbols’ or ’numbers’ character set, the minimum defaults to 1. This
ensures that for any password Bitwarden generates that at least one number and symbol
is present in every password. This is not true for Teampass nor Keepass and explains the
reasoning non-uniform character frequencies because there are fewer special characters than
numbers and fewer numbers than letters.

3.3. Randomness Tests. In addition to our RNN analyses, we perform additional tests of
randomness on the generated passwords.

3.3.1. χ2-Test for Randomness. We perform χ2-tests on each generated password from each
password manager. Specifically, we test if the character distributions of a single password is
uniform. Because our password length is 16, we can say that each password has 16 possible
characters, so our test uses 15 degrees of freedom. At α = 0.05, our critical value is 7.261,
meaning we reject our null hypothesis when our χ2 test statistic is greater than 7.261.

Our null hypothesis in this case is that the character ci at index i has a 1
16 probability of

being the specific character k (uniform over the possible characters in the password). We

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS7

Table 3. χ2-Test Null and Alternative Hypothesis

H0: P (ci = k) = 1
16

Ha: P (ci = k) 6= 1
16

expect most passwords to fail to reject H0, meaning the χ2 statistic is less than our critical
value 7.261. When we run this test, we get the results in table 4.

Table 4. χ2-Test Results

KeePass BitWarden TeamPass

Proportion Failed to Reject H0 1 1 1
Maximum Test Statistic 1.5 1.625 1.625

From our test, we can see that when we run χ2 test on each individual password, KeeP-
ass, BitWarden, and TeamPass all seem to draw characters from a uniform distribution
because every password failed to reject H0. This suggests that all three password managers
have strong password generation when we only look at individual passwords whereas when
we looked at 100,000 passwords before, BitWarden’s password generation appeared to be
weaker. It may be important to note that because we run the tests on each individual
password, the sample size for each test is relatively small.

3.3.2. zxcvbn Algorithm. We also tested each individual password using zxcvbn [10]. This is
an algorithm that uses pattern matching and conservative estimates to evaluate the security
of passwords. Furthermore, zxcvbn recognizes and weighs 30,000 common passwords, com-
mon names according to US census data, popular words from Wikipedia and US television,
repeated patterns and sequences, and other common trends in passwords in its evaluation
[10]. We will be looking at zxcvbn’s score metric, which is an integer 0-4 that indicates
password strength (4 being the strongest, requiring ≥ 1010 guesses), and its estimate of the
number of attempts needed to guess the password (in log10).

Table 5. zxcvbn-Analysis Results

KeePass BitWarden TeamPass

Mean zxcvbn-Score 4.0 4.0 4.0
Mean Required Guesses (in log10) 15.982 15.971 15.983

From our results of running zxcvbn on each password (table 4), we can see that the pass-
words generated by KeePass, BitWarden, and TeamPass are all strong, requiring on the
order of 1015 guesses on average. This means if an adversary can guess at a rate of 1000
guesses per second, it would take more 31688 years on average to guess the password. This
supports the findings from our χ2-tests, suggesting that the individual passwords generated
by all three password managers are still strong. Even so, we can see that BitWarden pass-
words are estimated to require fewer guesses than KeePass and TeamPass, requiring on the
order of 1014 fewer guesses on average. This aligns with the previous analyses that suggested
BitWarden’s password generation is relatively weaker than those in KeePass and TeamPass.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS8

3.4. Recommendation. Although the character sets of the passwords generated by Bit-
warden, Teampass and Keepass are different, we don’t believe that there is a significant
security threat posed by knowing the password manager of the generated password. We be-
lieve that all three produce passwords that are secure and inherently random. Even though
Bitwarden has a higher probability rate of guessing the next character, the percent increase
only marginally reduces the passwords necessary to check for longer passwords.

4. Password and Information Storage

4.1. Introduction. If the account data isn’t stored securely, then the password manager
could open the client to more security vulnerabilities. The database becoming compromised
at any point would give the attacker enough details to infiltrate the client’s accounts on
various websites. Some password managers even migrate information to a different server,
meaning that a poor communication scheme could also give an adversary attacking through
the network direct access to sensitive information.
Therefore, we chose to evaluate the data storage scheme and not necessarily the specific en-
cryption schemes used in storing the data, as BitWarden, TeamPass, and KeePass all utilize
reliable and provably secure one-way encryption schemes. For the password vaults that use
non local storage, namely TeamPass and BitWarden, we also evaluated the communication
protocols between the browser and the server in which data was stored. To do this, we read
their documentation and assessed the code for further information and confirmation.

4.2. KeePass. We analyze KeePass’s password and information storage by evaluating their
methods of handling data within the program and identifying any potential vulnerabilities.
KeePass uses a combination of the Advanced Encryption Standard as well as ChaCha20
to encrypt entire password databases (passwords, usernames, notes, etc.) [8]. SHA-256 (a
secure one-way hash function) is then used to hash the master key components and the
output is run through a key derivation function to generate a secret key, making the use of
pre-computed and guessing attacks much more difficult.

KeePass only manages sensitive data encryptedly in process memory, including master
keys and passwords – it does not encrypt user names, notes, file attachments, etc. This
means that if the process memory of KeePass is dumped to disk, all the master keys and
passwords would be safe, but other information would be leaked in plaintext. KeePass deems
this is acceptable because it assumes that non-sensitive data like names and notes cannot
be used to compromise the credentials of the user. However, we believe that this may not
necessarily be the case. For example, if a user misuses the notes section of KeePass’s entries,
they might put information like recovery codes or password hints in plaintext. Because this
is not encrypted in process memory, an adversary could then read the notes of a password
entry and learn something to aid in guessing the user’s password. We believe that other
similar attacks exploiting user error could be done using these plaintext fields.

There are also some operations for which KeePass must make sensitive data available
unencryptedly in process memory, such as showing an unhidden password to the user in the
UI. Furthermore, KeePass’s storage and encryption heavily relies on Windows and .NET,
using features like Windows Data Protection API. Because of this, Windows and .NET could
potentially make copies of data in the process memory that cannot be erased by KeePass.
This means that if a user runs on a machine where Windows or .NET are compromised, an
adversary could read and copy the unencrypted sensitive data, allowing them to learn the
master keys and passwords of the user. Under KeePass’s assumptions, this is not a concern

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS9

because KeePass is run in a secure environment, however, user errors could lead to this
attack being feasible in practice.

4.3. BitWarden. The BitWarden Google Chrome Extension stores account information
both on the Microsoft Azure cloud and on Google Chrome storage. It utilizes AES-CBC
256-bit encryption for the stored data and PBKDF2 SHA-256 to get the encryption key.
With these encryption schemes, BitWarden acts as a zero-knowledge solution, only allowing
decryption through the user’s master password.

To analyze the security of their data storage, we did a code analysis to evaluate what
information BitWarden encrypted and how information was sent to the cloud. We were
unable to of course evaluate the Cloud itself, although BitWarden claims that, once its
servers receive your data, the server again cryptographically salts and hashes the value to
its servers.

We found that BitWarden’s data storage scheme encrypts each field, including the website,
username, password, and any other important information, before sending it to cloud storage.
In cloud storage, this encryption is unable to be decrypted without the user’s masterkey. The
only data stored on Google Chrome’s local storage is the master key, which is also encrypted
before storage, meaning that the data can be decrypted only when its been sent back to the
user’s browser on a fetch. Assuming that the encryption schemes are implemented correctly,
BitWarden’s data storage security seems be sound and to follow the security protocols they
describe.

4.4. TeamPass. TeamPass stores all information on a server that users can access via login,
utilizing the encryption scheme AES-256-CTR[5].
After analyzing the code, we found that, when migrating the information to the central
server, TeamPass makes an API call that includes a URL that contains all information,
including the password. None of this information is encrypted before being sent the server,
meaning that even the password is stored in plaintext in the URL. After the server receives
the password, it encrypts and hashes the password, and any customized fields, before storing
the information on a MySQL database.
TeamPass’s communication protocol with its server is vulnerable to sniffing. If an adversary
were to intercept a message between the user and the server, it would have direct, non-
encrypted access to all important information, including login credentials and the respective
website URL. This means they would direct access to the client’s account, and considering
that TeamPass is used to share account information between users, this would impact all
users associated with that account.
TeamPass’s data storage protocol relies on the assumption that the other information does
not contain critical information and wouldn’t be enough to compromise the user’s account.
In order to encrypt these other fields, the user would have to create custom fields. However,
these fields could contain important personal information that could leave a user vulnerable
in the case that this information becomes accessible to an adversary. We would like to note
that the extra hashing on the password provides authenticity to the encryption in the case
of data corruption.

4.5. Comparison of Password Storage Schemes. When comparing the encryption schemes,
we found that BitWarden is the most secure in terms of its data storage scheme. BitWarden
is the only cloud-based password vault that we analyzed that provides full end-to-end encryp-
tion. Furthermore, BitWarden’s decryption is only accessible via the user’s local machine.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS10

Assuming that the encryption schemes are implemented correctly, BitWarden provides se-
curity from start to finish in the password management process.
Unlike BitWarden, both KeePass and TeamPass don’t automatically encrypt all informa-
tion that it stores, meaning that some fields are accessible in the case that the database or
process memory is leaked to an attacker. Furthermore, TeamPass has a seemingly insecure
communication protocol between the client and the server, leaving it vulnerable to various
network attacks.

5. AutoFill

5.1. Introduction. Autofill is a function that makes the user’s life convenient and is be-
coming increasingly used by the everyday user. It prevents unnecessary repetitiveness in
filling out user information and allows users to adopt more complex passwords, as the user
no longer need to remember passwords themselves.
To analyze the autofill features available in these password vaults, we performed a code
analysis and some basic tests, looking specifically for autofill phishing attacks. By "autofill
phishing attacks," we mean those that edit the HTML to collect information without the
user’s knowledge nor consent. An example would be an input field for the user’s address
with a text box size of zero – in this case, the user would be handing over their personal
information with no knowledge of such, as it wouldn’t be evident from the UI. We analysed
KeePass and Bitwarden for this functionality, but not TeamPass, as TeamPass does not pro-
vide this functionality directly. TeamPass does provide autofill capabilities through various
extensions. However, considering that extensions are often developed by developers outside
the main product, we chose to prioritize staying strictly within our chosen applications.

5.2. KeePass Autofill Analysis. While KeePass does not have an actual autofill func-
tion, it has several functions which can approximate autofill. Users are able to use copy
paste, drag drop, and auto-type to more conveniently fill in their passwords. KeePass’
copy paste function uses the system clipboard, but for security purposes the clipboard gets
cleared after approximately 12 seconds. Drag drop uses the Windows’ drag and drop to
transfer passwords. KeePass’ autotype uses a keyboard macro to input the user’s username
and password.
We found KeePass’s autofill approximations to be secure against most attacks, mostly be-
cause of KeePass’ assumption that the user’s environment is free from malware/spyware -
this shifts the onus of auto-type attacks from KeePass to the user. As a result, users of
KeePass are highly vulnerable to social engineering attacks by virtue of how KeePass han-
dles autofill: it is entirely on the user how and where to enter in their sensitive information,
as KeePass doesn’t check if where the user is inputting the login credentials matches the
respective website; KeePass merely provides the tools required for users to do so in a secure
way. Since KeePass contends that "neither KeePass nor any other password manager can
magically run securely in a spyware-infected, insecure environment", this makes KeePass’
autofill feature secure based on its assumptions.
Because of KeePass’s use of the system to provide autofill functionality, it is secure against
autofill phishing attacks, meaning that it won’t fill information that the user does not intend
to.

5.3. Bitwarden Autofill. BitWarden allows users to autofill account credentials. In our
code analysis, we found that BitWarden generally prevents most autofill phishing attacks
that hide fields. BitWarden checks to see if the field is not hidden and greater than 10px in

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS11

width and height. Therefore, Bitwarden is secure against autofill phishing attacks that deal
with setting fields to be hidden or of extremely small size.
However, we found that BitWarden does not check for fields with zero opacity or fields that
are covered by other other objects. This means that BitWarden isn’t secure against all
phishing attacks.
After assessing the code to find this information, we also verified this by utilizing the HTML
of Viljami Kuosmanen’s proof-of-concept autofill phishing attack 1. We verified that BitWar-
den prevented the phishing attacks described, and after editing the HTML, we confirmed
that BitWarden was vulnerable to other kinds of phishing attacks.
Like KeePass, Bitwarden also allows users to copy and paste passwords in plain-text to input
into whatever field they desire. This function also uses the clipboard, and although Bitwar-
den offers the capabilities to automatically clear the clipboard after a user-defined number of
sections, we noticed that its default setting is "Never". Without the user explicitly changing
that setting, the clipboard keeps the password for an undefined period of time, meaning that
Bitwarden’s default copy and paste function is susceptible to user error targeted attacks –
the user could very possibly paste the password accidentally into unintended places, and an
adversary could exploit these human errors.

5.4. Comparison of Autofill Functions. KeePass appears to have the most secure aut-
ofill functionality, although it’s also the more involved of the two, requiring the user to use
hotkeys to start the auto-type process or actions of drag and drop or copy and paste. KeeP-
ass only operates through the local machine, meaning that it has no access to the browser
except through the user’s keyboards.
BitWarden has a more commonly known autofill function, meaning that its open to autofill
phishing attacks. Currently, it isn’t secure against all phishing attacks, although prevent-
ing these kinds of attacks would be very possible. However, regardless BitWarden interacts
with the website directly, meaning that its vulnerable to unknown autofill attacks and future
autofill attacks, unlike KeePass.

6. Password Manager Usability

We also began preliminary analysis of the password manager’s usability. To analyze us-
ability, we asked volunteers to complete a survey that contained some questions regarding
general motivations behind using password managers, as well as specific questions regard-
ing our study’s password managers. In regards to the password managers we’re using, we
asked users to complete set-up, generate a password, and fill in credentials feature. After
completing these actions, we gauged them for usability on a scale of 1 to 10 where, in each
case, 1 was "Easy" and 10 was "Difficult."

We interviewed 24 people on the usability of the three password managers, and found
the results to be rather disheartening: in general many of the respondents tended to dislike
using a password manager, finding it difficult to both set up and store passwords. Coupled
with the fact that many of the respondents weren’t already using a password manager and
don’t plan to after the survey, open-source password managers still have quite a ways to go
to make their product accessible beyond simply making the password manager free.

1found at https://anttiviljami.github.io/browser-autofill-phishing/

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS12

6.1. General Survey Results. When looking for a good password manager to use, 100%
of respondents looked for the ability to sync passwords between devices and over 90% of
respondents wanted a secure storage of passwords. It appears that the frustration of not
being able to log on to specific websites at will is the main priority of users when looking
for a password manager. Users did not seem to find the ability to auto-fill as important, nor
the aesthetic of the password manager.

Almost half of the respondents were already using a password manager, and some of the
concerns raised for not using a password manager is the added work needed to switch to a
new method of storing and generating passwords.

Figure 5. Current password usage: Breakdown of responses to the question
"If you didn’t use a password manager before, would you use one now?"

6.2. Usability of Bitwarden. Participants that evaluated Bitwarden found the UI to be
fairly easy to navigate, as Bitwarden had the lowest scores to all survey questions. Specif-
ically, Bitwarden has the lowest scores in the questions about difficulty of set up (1.75 out
of 10), password storage (2 out of 10), the filling-in of credentials (2.25 out of 10), and
navigation (2.5 out of 10). In regards to setup, one user noted that the "download process
was very quick" and that Bitwarden’s video guide was "helpful for setup." For password
generation, the respective UI was described as "straightforward" and "smooth." However,
some noted that some of the extra features, like setting up authenticator keys, were confus-
ing. Navigation and autofill were generally described as "streamlined, " "manageable," and
"self-explanatory."
Overall, Bitwarden appeared to design with the user in mind at every step. Although the us-
age of extra features and meaning of some icons were unclear, the features we were evaluating
were generally easy to navigate.

6.3. Usability of KeePass. KeePass scored relatively well in it’s set up process, scor-
ing a 3.33, however its general navigation appeared to frustrate users(6.66). The set up
was described as "simple", vastly contrasting the responses to the navigation. Users found
themselves having to navigate through "trial and error" and described KeePass’s UI as "out-
dated" and "non-intuitive."
In the other two questions about credential fill-in and password storage, users found them-
selves in the middle about it’s usability, both being scored at a 4.66.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS13

6.4. Usability of TeamPass. Our study found that users struggled the most with using
TeamPass, scoring the worst on almost all questions. Users particularly struggled with
password storage (8.2) and general navigation (7.8). When storing a new password, one
user received an ambiguous error that read "Hacking Attempt" and the respective UI was
generally described as "confusing." Users were especially frustrated by the significant amount
unlabelled buttons and unclear actions.
Users seemed to find set up and filling-in credentials relatively easier than the other two
actions, scoring them as 4 and 4.6 respectively. It is worth noting that TeamPass’s main set
up involves setting up a server, which we didn’t ask our users to attempt – instead, we set
up the server prior to the study. However, logging in credentials was generally described as
"easy" even though TeamPass does not provide an autofill feature.

6.5. Password Manager Recommendations. Although this study is preliminary, we
believe that users enjoyed using Bitwarden the most due to its ease of use and simple
design. A common theme of Keepass and Teampass was confusion in both the language and
the location of certain buttons to accomplish certain tasks.
While the functionality for all three password managers are there, KeePass and Teampass
would require a longer learning period in order to become accustomed to the program.

7. Related Work

Password managers are both highly valued and scrutinized in the technical world: a web
search for ’Password Manager Security Analysis’ brings up several papers of interest. While
there has been a lot of research and testing done on these password managers, all three
password managers are under active development which could introduce new vulnerabilities
to the codebase.

There have been previous works analyzing the password generation of other password
managers. In [7], they found that the password generation of RoboForm did not choose
characters uniformly at random, selecting "Z", "z" and "9" less frequently than other char-
acters. This means that an adversary could guess RoboForm’s generated passwords with
higher accuracy than guessing at uniformly random. This is similar to our findings with
BitWarden passwords, suggesting that this weakness in password generation may not be
unique to BitWarden.

There have also been previous works that found vulnerabilities in other password man-
agers’ autofill feature. For example, in [7], they found that Firefox’s autofill feature was
vulnerable to harvesting attacks. This means if a user visits a website compromised by an
adversary, the adversary could insert iframes that trick Firefox’s autofill feature to fill out
the user’s credentials, all without the knowledge of the user.

While the security analysis of password managers is by no means a novel idea, we have not
seen a paper tuned towards the analysis of password managers from a user-sided perspective.
For example, in the paper Password Managers: Attacks and Defenses, different attacks
on a broad range of password managers are discussed and analyzed (including an autofill
analysis), but the scope of said password managers is undefined.

There’s also been much interest in security of all the major web browsers currently avail-
able to consumers. Recently, there were a few major vulnerabilities discovered by researchers
in the chrome browser (with one exploit specific to autofill) that allowed the attacker to ar-
bitrary execute code.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS14

Multiple security companies have also audited these password managers, usually with
recommendations on improvements needed to ensure the security of the managers. In a 2018
report [2], a German security company Cure 53 found multiple vulnerabilities in login urls
and also their autofill code. There are also audits on keepass which produced no significant
security vulnerabilities as well [1].

Even in the history of 6.857, past student project have focused on the security of password
managers. One analyzed the passwoord managers connected to Google Chrome, FireFox,
Internet Explorer, and Microsoft Edge and external password managers, like Roboform,
1Password, PasswordSafe, and LastPass [9]. They found that most of the listed password
managers were vulnerable, often providing the plaintext of the url or the hash of the url
directly to the hacker. However, they recognize that this only becomes an issure in the
instance that the user’s local machine is compromised. Another student research project
looked into the security of autofill in google Chrome, FireFox, and LastPass[6]. They noted
some successful breaches in the three applications, specifically noting that they were able
to use a module to decrypt the ciphertext of the file containing the passwords on Google
Chrome and similarly able to decrypt the master key and login data of FireFox.

Finally there have been many usability studies as well on how to best create a system
where users would be comfortable in using a password manager [4].

8. Conclusion

We are mostly confident in the security of Bitwarden, Teampass, and Keepass. However,
TeamPass has clear vulnerabilities in their communication protocol between the client and
the server, and Bitwarden isn’t entriely secure against all phishing attacks. Regarding
usability, open-source applications still have a ways to go, but Bitwarden appears the most
promising and user friendly. It is worth noting that TeamPass is coming out with a new
version, which may introduce changes that could greatly improve their functionality.

In terms of active development, all three projects boast an active community and continue
to have updates to the existing codebase. At the end of the day, what is important is that
users don’t use the same password for all their websites.

9. Acknowledgments

We’d like thank the 6.857 staff for all the hard work they put into making this semester
fun and interesting. We’d especially like to thank Andres our favorite 6.857 project advisor
for helping provide great advice.

References

[1] Brinkmann, M. Keepass audit: no critical security vulnerabilities found - ghacks tech news, Nov 2016.
[2] Brinkmann, M. Results of bitwarden security audit published - ghacks tech news, Nov 2018.
[3] Colby, C. The best password managers of 2021 and how to use them, Apr 2021.
[4] Karole, A., Saxena, N., and Christin, N. A comparative usability evaluation of traditional pass-

word managers. In Proceedings of the 13th International Conference on Information Security and Cryp-
tology (Berlin, Heidelberg, 2010), ICISC’10, Springer-Verlag, p. 233–251.

[5] Laumaillé, N. Teampass documentation, 2021.
[6] Lin, S., Baral, A., Vadari, M., and Maccow, S. Security Analysis of Browser Auto-fill and

Password Managers. PhD thesis, 2020.
[7] Oesch, S., and Ruoti, S. That was then, this is now: A security evaluation of password generation,

storage, and autofill in thirteen password managers. CoRR abs/1908.03296 (2019).
[8] Reichl, D. Keepass security.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS15

[9] Weckwerth, N., Xia, B., and Zhang, J. Password Manager Security. PhD thesis, 2020.
[10] Wheeler, D. L. zxcvbn: Low-budget password strength estimation. In 25th USENIX Security Sym-

posium (USENIX Security 16) (Austin, TX, Aug. 2016), USENIX Association, pp. 157–173.

EVALUATING THE THEORETICAL SECURITY OF VARIOUS OPEN-SOURCE PASSWORD MANAGERS16

Figure 6. XKCD 792

https://xkcd.com/792/

	1. Introduction
	2. Background
	2.1. KeePass
	2.2. BitWarden
	2.3. TeamPass

	3. Password Generation
	3.1. Password Generation Options
	3.2. RNN Analysis
	3.3. Randomness Tests
	3.4. Recommendation

	4. Password and Information Storage
	4.1. Introduction
	4.2. KeePass
	4.3. BitWarden
	4.4. TeamPass
	4.5. Comparison of Password Storage Schemes

	5. AutoFill
	5.1. Introduction
	5.2. KeePass Autofill Analysis
	5.3. Bitwarden Autofill
	5.4. Comparison of Autofill Functions

	6. Password Manager Usability
	6.1. General Survey Results
	6.2. Usability of Bitwarden
	6.3. Usability of KeePass
	6.4. Usability of TeamPass
	6.5. Password Manager Recommendations

	7. Related Work
	8. Conclusion
	9. Acknowledgments
	References

