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ABSTRACT

Online image uploads have become ubiquitous through sites such as Patreon, Dropbox and Google
Drive. As these become more common, users may want to encrypt their images before uploading the
encrypted version to such sharing sites. However, most of these platforms also compress the image to
allow for faster uploads, and this compression is known to be lossy. When decrypted, a lossy image
could be entirely unrecognizable. Therefore, this work analyzes a current encryption scheme that is
robust against noise and crop attacks, and therefore may be robust against compression. We find that
it is most effective for smaller images, but further research is needed for larger and more compressed
images.

1 Introduction

As technology advances, the security of image sharing has become more and more important. With images being
widely available online, it may be necessary for these images to be encrypted, or only available to users with specific
credentials. For example, sites like Patreon or Dropbox make images available to many users, but the uploader may
want to encrypt their image so that only a few of those users can see the original image – paid subscribers, for example.
In the case of Google drive, a user may want to encrypt images they upload so that the host cannot see the content of
their image. The challenge that is presented with encrypting uploaded images is that most image hosting platforms
employ lossy compression. Compression makes an image smaller and easier to load at the cost of image information. If
the compression technique is "lossy", pixel information is lost in the compression process, and it standard for the JPEG
image file type. Compressing an encrypted image could result in a corrupted decrypted image due to that information
loss. In this work, we implement a published image compression technique that may be robust to compression, and
evaluate its performance on different image sizes and levels of compression. We find that it is most effective on small
images and that compression still loses out on image information, and more tests are required to find an encryption
algorithm that is robust to compression.

2 Related Works

In this section, we will discuss other existing image encryption schemes. For example, Soleymani et al. recommend
a public-key image encryption scheme using elliptic curves in their paper [1]. They argue that it is fast and resource
efficient, and is thus useful for real-time applications such as image encryption. This was not implemented in the current
work but can be useful for future works.

There also exists research on Encryption then Compression (EtC) systems, in which images are encrypted, compressed,
(in some cases) decompressed, and then decrypted. For example, Kumar et al. present a EtC scheme uses DWT,
singular value decomposition, and Huffman coding [2]. As part of EtC systems, image compression and decompression
algorithms that work with different image encryption algorithms have been developed. For example, Schonberg et al.
present a scheme to compress encrypted images based on linear error correcting codes [3]. Sathyalakshmi et al. propose
a scheme for compressing and then decompressing AES encrypted images using discrete cosine transform (DCT) and
discrete wavelet transform (DWT) compression [4].

Research has also been done on image encryption schemes that robust against existing image compression algorithms.
For example, Chuman et al. propose a block scrambling-based encryption scheme that uses JPEG compression and
decompression [5]. Ozturk and Sogukpinar analyze and compare two image encryption algorithms – Mirror-like image
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encryption and Visual Cryptography – with and without PNG and JPEG compression [6]. Wang et al. propose a
low-cost encryption scheme using rate-distortion optimization where encrypted images can be accurately decrypted
even after their lossless compression by a third party [7].

Related to our research project is the topic of simultaneous image encryption and compression. One such algorithm,
which uses using compressed sensing (CS), structurally random matrix (SRM), and permutation-diffusion type image
encryption, is described and recommended by Zhang et al. [8].

Also related to our research project is the topic of partial image encryption, which uses format-preserving encryption
to encrypt only parts of an image, while leaving others unencrypted. Jang et al. describe a scheme for partial image
encryption using format-preserving encryption schemes FF1 and FF3-1, which does not increase the size of the data [9].

3 Algorithm

In this project, we implemented and evaluated the encryption algorithm given in [10]. For convenience, we will also
briefly summarize it here.

First, the algorithm generates three random messages m1, m2, and m3, each of which is a 53-byte string. These are
encrypted using RSA to yield the ciphertexts c1, c2, and c3 [11]. The ciphertexts and messages are then used to initialize
a quantum logistic map, which provides the keystream that is reversibly applied to the image, and the encrypted image
is returned along with the ciphertexts. Since the private key is required to decrypt the ciphertexts, only the holder of
the private key can regenerate the keystream and apply it to the encrypted image to recreate the original, assuming the
keystream is truly pseudorandom.

The quantum logistic map is specified in terms of sequences xi, yi, and zi, with

x0 =
1

[m1 − c1 mod (M + 1)(N + 1)] + r

y0 =
1

[m2 − c2 mod (M + 1)(N + 1)] + r

z0 =
1

[m3 − c3 mod (M + 1)(N + 1)] + r

where

r =

M∑
i=1

N∑
j=1

5
√
(P (i, j) + i+ j)2,

the image dimensions are M ×N , and P (i, j) is the color value at pixel (i, j) in the image. These are then updated
according to the quantum logistic map:

xi+1 = r(xi − |xi|2)− ryi
yi+1 = −yie−2β + e−βr ((2− xi − x∗i )yi − xiz∗i − x∗i zi)
zi+1 = −zie−2β + e−βr (2(1− x∗i )zi − 2xiyi − xi)

where x∗i is the complex conjugate of xi and r and β are the logistic map parameters. We use the parameters β = 6 and
r = 3.99, as given in [10].

Each channel of the image is subjected to five encryption rounds. Each round first permutes the rows and columns of
the image matrix, performs a discrete cosine transform, permutes the rows and columns some more, then performs an
inverse discrete cosine transform. The sequences xi, yi, and zi are used to determine the row and column permutations;
the full details are given in [10] and will not be repeated here.

4 Implementation

Since a reference implementation is not provided by [10], we have written one in Python.
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4.1 Structure and Dependencies

Our implementation is written in Python; its primary dependencies are OpenCV [12] for working with images as
matrices, Numpy [13] for performing mathematical operations on those image matrices, and rsa [14] and secrets [15]
for cryptographic operations such as loading RSA keys and generating and encrypting the messages m1, m2, and m3.

An image is split into three channels, each of which undergo five encryption rounds; the functions enc and dec
respectively call enc_channel and dec_channel to encrypt or decrypt each channel of the image. Since encryption
and decryption rounds are done in much the same way, both enc_channel and dec_channel use encryption_round
to perform a single encryption round.

We implement the necessary row/column permutations and discrete cosine transforms using helper functions
permute_rows, permute_cols, dct, and inverse_dct. The quantum logistic map is implemented by update_xyz,
which takes in values for xi, yi, and zi (in addition to the logistic map parameters) and returns (xi+1, yi+1, zi+1).

The source code for our implementation is given in Appendix A.

4.2 Challenges

Our first challenge was that, due to the structure of the quantum logistic map, xi, yi, and zi increase exponentially in size.
Using the quantum logistic map equations verbatim from [10] caused (x, y, z) to overflow all integer representations
we could find. Therefore, our implementation performs all arithmetic operations modulo (M + 1) · (N + 1), where M
and N are the image dimensions.

We also experienced many issues with efficiency, mostly related to the discrete cosine transform (DCT). DCT inherently
has time complexity O(M2 ·N2), so even though we used Numpy optimizations where possible in our implementation,
it is slow even for quite moderately sized images. Unfortunately, the encryption algorithm performs DCTs frequently:
each encryption round requires one DCT and one inverse DCT, and a three-channel image will require fifteen encryption
rounds. After Numpy optimization, a 96× 72-pixel image took 40 seconds to encrypt, and a 162× 208 image took 13
minutes.

5 Methods

We used two test images, shown in Table 1: a color photo of a flower [16], and a grayscale image with text [17].

(a) Color test image

(b) Grayscale test image

Table 1: The color and grayscale test images used in testing.

These images were resized to several different scales, in order to test encryption performance. We tested decryption of
non-compressed images (which always worked perfectly), as well as decryption of images that had been subjected to
various degrees of compression while encrypted. Since most encryption algorithms used by commercial platforms such
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as Instagram are proprietary, we used ImageMagick [18] to compress our images. This also allowed us to experiment
with a variety of compression parameters.

The base ImageMagick command used to compress images was:

> convert input.jpg \
-sampling-factor 4:2:0 \
-strip \
-quality 85 \
-interlace Plane \
-gaussian-blur 0.05 \
-colorspace RGB \
output.jpg

The main parameters we modified were the quality and Gaussian blur (sampling is only applied if quality is less than 90
and had little visually apparent impact in any case). According to the JPEG image format, “quality” is a value between
1 and 100 inclusive, but the ratio of input image size to output image size varies nonlinearly with quality. Nevertheless,
quality is usually specified as a percentage. By default, ImageMagick uses 92% quality for JPEG images [19].

The Gaussian blur parameter refers to the σ value used in the blur equation

G(u, v) =
1

2πσ2
e−(u2+v2)/(2σ2).

A higher value for σ corresponds to an increased amount of blur [20].

Lastly, when testing our implementation, we used the same 1024-bit length RSA keys, which can be found with on
GitHub with our source code at https://github.com/shilohc/6857-proj. We generated the keys with openssl
[21] using the following commands:

> openssl genrsa -out private.pem 1024
> openssl rsa -in private.pem -pubout -outform PEM -out public.pem

4
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6 Results

6.1 Large image sizes

Because the algorithm had a long runtime, we started with very small images before gradually moving larger. This
progression showed that results varied greatly between even small size differences of the same image.

(a) 32× 24 image (b) 32× 24 encrypted

(c) 64× 48 image (d) 64× 48 encrypted

(e) 96× 72 image (f) 96× 72 encrypted

(g) 128× 96 image (h) 128× 96 encrypted

Table 2: A comparison of the original and encrypted versions of various sizes of the same color image.

In Table 2, we see that when an image gets larger than 96× 72 pixels, information begins to get leaked to the naked eye.
To confirm these findings, we also tested on grayscale images, shown in Table 3.

5
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(a) 55× 70 image (b) 55× 70 encrypted

(c) 108× 139 image (d) 108× 139 encrypted

(e) 162× 208 image (f) 162× 208 encrypted

Table 3: A comparison of the original and encrypted versions of various sizes of the same gray-scale image.

As we can see in both Table 2 and Table 3, as the size of the image increases the decryption becomes ineffective and
completely clear to the naked eye. This is consistent with the examples in the original paper, as they were all quite
small, but not useful for a general purpose image encryption scheme.

6.2 Compression of encrypted images

To check how the algorithm performs under compression, we used ImageMagick, a set of commands that allows for
compression from the command line. We used this tool also because it allowed us to change the parameters of the
compression, and so we were able to vary the blur and compression level. The results on a color image are shown in
Table 4.

6
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Encrypted, Decrypted images
compressed images

No compression

Compression quality 95%,
no blur

Compression quality 85%,
Gaussian blur 0.05

No compression,
Gaussian blur 0.05

Table 4: A comparison of the encrypted and decrypted images using different amounts of compression and blur.

Even with compression quality 95%, the image is nearly unrecognizable to the naked eye. This means that the image
would not work as a key and only work to transfer information to humans in a few cases. Even with small images, the
algorithm takes a very long time to run and returns noisy results.

7 Comparison with other algorithms

In this section, we discuss other encrpytion methods that may be effective with compression. These methods were
already implemented by their creators, and so we tested on the existing implementations.

7.1 Image Encryption using Hénon Chaotic Map

A chaotic map is a map that exhibits chaotic, or seemingly random, behavior. Chaotic maps are simple and fast
functions, making chaos-based image encryption algorithms fast enough for real-time applications [22]. Cryptographic
algorithms and chaotic maps have similar properties, such as their sensitivity to changes in their initial conditions and
their pseudorandom behavior. As a result, it makes sense to develop chaotic based cryptographic algorithms for secure
communication and cryptography.

Image encryption using chaos is based on the ability of some dynamic systems to produce sequences of numbers that
are random in nature. Messages are then encrypted using these sequences. Because of the pseudorandom behavior of
chaotic maps, the output of the system will appear random to any attackers. However, the receiver will still be able
to decrypt it using the system’s initial parameters, i.e. the secret symmetric key. An important difference between
cryptography and chaos maps is that encryption transformations are defined on finite sets whereas chaos maps have
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meaning only for real numbers. Each chaos map has parameters that are equivalent to encryption key in cryptography
[23].

(a) 32× 24 encrypted (b) 32× 24 decrypted

(c) 128× 96 encrypted (d) 128× 96 decrypted

(e) 512× 384 encrypted (f) 512× 384 decrypted

(g) 2048× 1536 encrypted (h) 2048× 1536 decrypted

Table 5: Images of different sizes were encrypted using a chaos Hénon map and then saved as JPEG files. The encrypted
images were then extracted from the JPEG files and decrypted using the chaos Hénon map.

To compare chaotic image encryption with the public-key image encryption algorithm we implemented, we tested an
open source implementation of chaotic image encryption that uses Hénon chaos maps [24]. We modified the code to
handle color images, and tested it with different amounts of compression.

We encrypted images of different sizes, saved them as JPEG images, and then decrypted them. The results can be found
in Table 5. Note that there is some loss when decrypting the JPEG versions of the encrypted images. This loss is not
present when decrypting from a BMP version of the encrypted images.
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Encrypted, Decrypted images
compressed images

No compression

Compression quality 95%,
no blur

Compression quality 85%,
Gaussian blur 0.05

No compression,
Gaussian blur 0.05

Table 6: We encrypted images with a chaos Hénon map, saved them as JPEG images, applied different amounts of
compression and blur on them, and then decrypted the images using the chaos Hénon map.

The results of the tests we ran on images with different amounts of compression can be found in Table 6. Note that this
algorithm handles compression slightly better than the asymmetric image encryption algorithm we implemented for this
paper. However, even low amounts of compression still quickly make it difficult to recognize the decrypted image as a
flower.

Overall, the chaos encryption algorithm was much faster than the one we implemented, and it handled compression
slightly better. We ran the tests using a symmetric secret key of (0.1, 0.1). From some rudimentary testing, we found
that changes to the secret key as small as 5e− 16 cause the decryption algorithm to output random noise. We also found
that the secret key values can be any real number in the range [−2.2, 1], inclusive. (Note that the lower bound may
be slightly lower, and may differ with the size of the image.) Since the algorithm is so sensitive to noise in its initial
conditions (i.e. the secret key), there are over ( 3.2

5e−16 + 1)× ( 3.2
5e−16 + 1) = 4e31 possible secret keys that an attacker

would have to test to break the encryption. Thus, even if you could test each key in one nanosecond, it would still take
over one trillion centuries to test all possible keys.

9
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7.2 Image Encryption using Chaotic Logistic Map

We also tested an open source implementation of chaotic image encryption using a chaotic logistic maps [25]. We
encrypted a test image, saved it as a JPEG file, and compressed it with 85% quality and 0.05 blur. We then decrypted
the original encrypted array, the encrypted image loaded from the JPEG file, and the encrypted image after compression
and blurring. The results can be found in Table 7.

(a) no compression (b) JPEG conversion (c) 85% quality compression, 0.05 blur

Table 7: A 512× 512 grayscale image was encrypted using chaotic image encryption with a logistic map. The table
above contains the decrypted uncompressed image (fig 7a), the decrypted image after JPEG conversion (fig 7b), and the
decrypted image after 85% quality compression and 0.05 blur (fig 7c).

Unlike with the implementation using Hénon maps, compressing an encrypted image by any amount, even just by
storing the encrypted array as a JPEG image, rendered the decrypted image completely indecipherable, and visually
indistinguishable from random noise.

7.3 Homomorphic Image Encryption

Homomorphic encryption is a form of encryption that allows users to perform computations on the encrypted data
without having to decrypt it first. We tested an open source implementation of an image encryption scheme that extends
Paillier’s Homomorphic Encryption (PHE) scheme to operate over images [26].

(a) 32× 24, no noise, decrypted (b) 32× 24, some noise, decrypted

Table 8: A small image is encrypted using PHE. It is then decrypted before and after noise is added to it.

The encryption algorithm outputs an encrypted array of extremely large integers in the range (2e150, 6e153), which
cannot be converted into an image, so instead of trying to compress the encrypted array, we tried adding some random
noise to it, using the code numpy.random.choice([-1, 0, 1], p=[0.1, 0.8, 0.1], size=cipher.shape)
to generate the noise. However, when even this tiny amount of noise was added to the encrypted array, the decrypted
image immediately became indecipherable, resembling random noise. See Table 8 for a comparison between the
decryption of the unedited encrypted array, which is identical to the input image, and the decryption of the noisy
encrypted array.

7.4 Image Encryption Algorithm Based on Rubik’s Cube

Lastly, we tested an open source implementation of an image encryption algorithm based on the Rubik’s Cube [27].
The algorithm scrambles the original image using the principle of Rubik’s cube and applies the XOR operator to the
rows and columns of the scrambled image using two secret keys. The original image is scrambled using the principle
of Rubik’s cube. According to the author of the code, experimental results and analysis have shown that the scheme
achieves good encryption and can resist multiple forms of attack.

We used the code to encrypt a test image, then saved it as a JPEG file and compressed it with 85% quality and 0.05
blur. We then decrypted the original encrypted array, the encrypted image loaded from the JPEG file, and the encrypted
image after compression and blurring.

10
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(a) no compression (b) JPEG conversion (c) 85% quality compression, 0.05 blur

Table 9: A 453× 512 grayscale image was encrypted using an image encryption scheme based on Rubik’s Cube. The
table above contains the decrypted uncompressed image (fig 9a), the decrypted image after JPEG conversion (fig 9b),
and the decrypted image after 85% quality compression and 0.05 blur (fig 9c).

The results can be found in Table 9. As you can see, the decrypted image after JPEG conversion is almost completely
indecipherable. In addition, after JPEG conversion, compression with 85% quality, and 0.05 blurring, the decrypted
image is indistinguishable from random noise.

8 Conclusions

Overall, we found that our implementation of the method shown by Jiao et al. is not very effective at hiding compressed
images. As pictures got larger, the encrypted images became less and less hidden by inspection. This is consistent with
the results in the original paper, which only used very small images. However, this shows that this method is not very
effective for more typically sized images. It is possible that we might get better results using keys with a larger bit
length, as we were using RSA keys with a bit length of 1024 for our tests. However, using larger keys significantly
increases the computational cost of the algorithm, and consequently, we weren’t able to test this.

Secondly, while the method claims to be effective against crop attacks and noisy images, it is not effective with
compressed images. With even a 5 percent compression, the decrypted image is heavily corrupted, and blur has a strong
effect on the decrypted image as well. It seems that the blur effect is disproportionate and requires a scheme that is
specifically robust to blurring. However, this may mean that the scheme would not be entirely secure, since increased
robustness increases the chance of collisions. Overall, the tested cryptographic method is not very effective for the
encryption, and we would need to look for a scheme that is more specifically robust against blurring. However, other
methods show promise and we believe that a method to return compressed and decrypted images is in the future.

9 Future Work

Given our results, there are plenty of avenues for future work. First, there are many other possible encryption scheme
that could be effective for compression. Our next step would be to test out other published methods: since compression
tends to involve blurring operations, it seems that methods designed to be robust to blurring might be more effective. As
noted in Section 4.2, the algorithm we studied was slow even on quite small images; since performance is important for
practical applications, it would be useful to compare encryption/decryption speeds against other encryption schemes.

Another option would be to try another compression type that does not rely as much on blurring. This includes "lossless"
image formats, which by definition has no loss of image information. We would expect that a lossless format would
decrypt successfully, but may not be compressible; characterizing compressibility of lossless encrypted images would
also be useful for practical applications. Overall, this is a broad and useful topic with many options for expansion.

A Source Code

The full source code and test images are available on GitHub at https://github.com/shilohc/6857-proj. The
encryption and decryption algorithms are implemented by encrypt.py:

1 import cv2
2 import numpy as np
3 import rsa
4 import secrets
5 import sys
6 import struct
7 import time
8
9 def update_xyz(xyz, mod_n, r=3.99, beta=6):

10 """
11 Updates x, y, z according to the quantum logistic map. Default values of
12 the parameters beta and r are given on page 6 of the paper; the quantum

11
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13 logistic map is given in equations 1-3. Note that x, y, z are complex
14 numbers.
15 Calculates all values mod (N+1)(M+1) (where M and N are the dimensions of
16 the input image).
17 """
18 x, y, z = xyz
19 x_new = mod(r * (x - abs(x)**2) - r * y, mod_n)
20 y_new = mod(-y * np.exp(-2*beta) + np.exp(-beta) * r * ((2 - x - np.conjugate(x)) * y - x *

np.conjugate(z) - np.conjugate(x) * z), mod_n)↪→
21 z_new = mod(-z * np.exp(-2*beta) + np.exp(-beta) * r * (2 * (1 - np.conjugate(x)) * z - 2 * x *

y - x), mod_n)↪→
22 return x_new, y_new, z_new
23
24 def dct(img):
25 """
26 Computes the discrete cosine transform of the array img. Assumes that img
27 is grayscale (single-channel).
28 """
29 M, N = img.shape
30 out = np.zeros((M,N))
31 i_array = np.array([[i for j in range(N)] for i in range(M)])
32 j_array = np.array([[j for j in range(N)] for i in range(M)])
33 sigma_array = np.array([[sigma(i, M) * sigma(j, N) for j in range(N)] for i in range(M)])
34 for u in range(M):
35 for v in range(N):
36 cos_array = np.cos(u * (2*i_array + 1) * np.pi)/(2*M) * \
37 np.cos(v * (2*j_array + 1) * np.pi)/(2*N)
38 out[u][v] = np.sum(img * cos_array)
39 return out * sigma_array
40
41 def inverse_dct(img):
42 """
43 Computes the inverse discrete cosine transform of the array img. Assumes
44 that img is grayscale (single-channel).
45 """
46 M, N = img.shape
47 out = np.zeros((M,N), dtype=np.float32)
48 u_array = np.array([[u for v in range(N)] for u in range(M)])
49 v_array = np.array([[v for v in range(N)] for u in range(M)])
50 sigma_array = np.array([[sigma(u, M) * sigma(v, N) for v in range(N)] for u in range(M)])
51 for i in range(M):
52 for j in range(N):
53 cos_array = np.cos(u_array * (2*i + 1) * np.pi)/(2*M) * \
54 np.cos(v_array * (2*j + 1) * np.pi)/(2*N)
55 out[i][j] = np.sum(sigma_array * cos_array)
56 return img * out
57
58 def permute_rows(img, primes):
59 M, N = img.shape
60 out = np.zeros((M, N))
61 for i in range(M):
62 for j in range(N):
63 out[i][j] = img[i][int((j + primes[i] - 1) % N)]
64 return out
65
66 def permute_cols(img, primes):
67 M, N = img.shape
68 out = np.zeros((M, N))
69 for i in range(M):
70 for j in range(N):
71 out[i][j] = img[int((i + primes[j] - 1) % M)][j]
72 return out
73
74 def encryption_round(X_rk, xyz_prev, mod_n, r, verbose=False):
75 M, N = X_rk.shape
76
77 # xyzs = [xyz_{500+rk(MN)}, xyz_{500+rk(MN)+1}, ..., xyz_{500+rk(MN)+MN}
78 xyzs = [list(xyz_prev)]
79 for i in range(M*N):
80 xyzs.append(update_xyz(xyzs[-1], mod_n, r))
81
82 # Calculate x_k', y_k', z_k', w_k', and s_k
83 xk_primes = [(np.floor(xyzs[k+1][0] * 1e14)) % (N+1) for k in range(M)]
84 yk_primes = [(np.floor(xyzs[k+1][1] * 1e14)) % (M+1) for k in range(N)]
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85 zk_primes = [(np.floor((xyzs[k+1][2] * 0.6 + xyzs[k+1][0] * 0.4) * 1e14)) \
86 % (N+1) for k in range(M)]
87 wk_primes = [(np.floor((xyzs[k+1][2] * 0.6 + xyzs[k+1][1] * 0.4) * 1e14)) \
88 % (M+1) for k in range(N)]
89 sk = np.array([[np.fix(sum(xyzs[M*j+i+1]) * 1e14) % 256 for j in range(N)] \
90 for i in range(M)], dtype=np.int64)
91
92 if verbose:
93 print("Starting row and column permutations...")
94 Xrk_permuted = permute_cols(permute_rows(X_rk, xk_primes), yk_primes)
95 if verbose:
96 print("Starting DCT coefficient matrix...")
97 F = dct(Xrk_permuted)
98 if verbose:
99 print("Starting row and column permutations...")

100 F_permuted = permute_cols(permute_rows(F, zk_primes), wk_primes)
101 if verbose:
102 print("Starting inverse DCT coefficient matrix...")
103 G = inverse_dct(F_permuted)
104 if verbose:
105 print("Generating encrypted image...")
106 xor_values = np.bitwise_xor(np.bitwise_xor(G.astype('int64'), sk),
107 X_rk.astype('int64'))
108 return xor_values, xyzs[-1]
109
110 def gen_ciphertexts(pkb):
111 """
112 Randomly select three messages, encoded as bytes, then
113 use the messages and the public key to generate three
114 ciphertexts. The messages can be at most (length of public key in bytes - 11) bytes long.
115 Returns the messages and ciphertexts.
116 """
117 messages = [secrets.token_bytes(53) for i in range(3)]
118 return messages, [rsa.encrypt(m, pkb) for m in messages]
119
120 def read_keys(public_filename, secret_filename):
121 """
122 takes any two public and secret key files
123 returns rsa.key.PublicKey and rsa.key.PrivateKey types
124 easily converted to string if need be
125 """
126
127 with open(public_filename, mode='rb') as public_file:
128 key_data = public_file.read()
129 public_key = rsa.PublicKey.load_pkcs1_openssl_pem(key_data)
130
131 with open(secret_filename, mode='rb') as secret_file:
132 key_data = secret_file.read()
133 secret_key = rsa.PrivateKey.load_pkcs1(key_data)
134
135 return public_key, secret_key
136
137 def sigma(x, L):
138 """
139 Helper function called by dct and inverse_dct.
140 """
141 if x==0:
142 return np.sqrt(1/L)
143 return np.sqrt(2/L)
144
145 def mod(a, n):
146 """
147 Returns `a mod n`, where `a` can be a complex or real number.
148 """
149 # If a is not complex
150 if not isinstance(a, complex):
151 return a % n
152
153 return complex(a.real % n, a.imag % n)
154
155 def enc(img, pkb, verbose=False):
156 """ Calls enc_channel on each channel in the image. """
157 if verbose:
158 print("Starting encryption...")
159
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160 image_dims = img.shape
161 # If image has one channel (grayscale)
162 if len(image_dims)==2:
163 return enc_channel(img, pkb)
164
165 # Else if image has 3 or 4 channels (RGB or RGBA)
166 if len(image_dims)==3 and (image_dims[2]==3 or image_dims[2]==4):
167 cipher, r, enc_img = ([], [], [])
168 for channel in range(image_dims[2]):
169 cipher_channel, r_channel, enc_img_channel =
170 enc_channel(img[:,:,channel], pkb, verbose=verbose)
171 cipher.append(cipher_channel)
172 r.append(r_channel)
173 enc_img.append(enc_img_channel.T) # (rows, cols) => (cols, rows)
174 enc_img = np.array(enc_img).T # (channels, cols, rows) => (rows, cols, channels)
175 return (cipher, r, enc_img)
176
177 # Else invalid image
178 return (None, None, None)
179
180 def enc_channel(img, pkb, verbose=False):
181 """
182 Takes in one channel of the plain image and the public key,
183 and returns the ciphertexts, r, and the encrypted image.
184 """
185
186 if verbose:
187 print("Encrypting new channel...")
188 # Calculate r
189 M, N = img.shape
190 r = np.sum((np.concatenate(list(np.arange(j,N+j) for j in range(M))) + img.flatten())**(2/5))
191 if verbose:
192 print("Calculated r...")
193 mod_n = (M+1)*(N+1) if (M+1)*(N+1)>256 else (M+1)*(N+1)*256
194
195 # Calculate m, c
196 m, c = gen_ciphertexts(pkb)
197 m_int = [int.from_bytes(m_i, sys.byteorder) for m_i in m]
198 c_int = [int.from_bytes(c_i, sys.byteorder) for c_i in c]
199 if verbose:
200 print("Calculated m, c...")
201
202 # Calculate xyz_500
203 xyz = [mod(1/(abs(m_int[i] - c_int[i]) + r), mod_n) for i in range(3)]
204 for i in range(500):
205 xyz = update_xyz(xyz, mod_n, r)
206
207 # X_rk holds the value of the image at start of round rk; X_0 = plain image
208 X_rk = np.array(img, dtype=np.float32)
209 # xyz_prev holds the value xyz_{500 + rk(MN)} (xyz_500 before rk loop)
210 xyz_prev = xyz
211
212 for rk in range(5):
213 if verbose:
214 print("In encryption round {}...".format(rk))
215 X_rk, xyz_prev = encryption_round(X_rk, xyz_prev, mod_n, r, verbose)
216
217 # Output ciphertexts, r, and encrypted image
218 return (c, r, X_rk)
219
220 def dec(img, ciphertexts, r, pkb, skb, verbose=False):
221 """ Calls dec_channel on each channel in the img. """
222 if verbose:
223 print("Starting encryption...")
224
225 image_dims = img.shape
226 # If image has one channel (grayscale)
227 if len(image_dims)==2:
228 return dec_channel(img, ciphertexts, r, pkb, skb)
229
230 # Else if image has 3 or 4 channels (RGB or RGBA)
231 if len(image_dims)==3 and (image_dims[2]==3 or image_dims[2]==4):
232 dec_img = []
233 for channel in range(image_dims[2]):
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234 dec_img_channel = dec_channel(img[:,:,channel], ciphertexts[channel], r[channel],
235 pkb, skb, verbose=verbose)
236 dec_img.append(dec_img_channel.T) # (rows, cols) => (cols, rows)
237 dec_img = np.array(dec_img).T # (channels, cols, rows) => (rows, cols, channels)
238 return dec_img
239
240 # Else invalid image
241 return (None, None, None)
242
243 def dec_channel(img, ciphertexts, r, pkb, skb, verbose=False):
244 if verbose:
245 print("Encrypting new channel...")
246 # Calculate r
247 M, N = img.shape
248 if verbose:
249 print("Calculated r...")
250 mod_n = (M+1)*(N+1) if (M+1)*(N+1)>256 else (M+1)*(N+1)*256
251
252 # Calculate m, c
253 c = ciphertexts
254 m = [rsa.decrypt(i, skb) for i in c]
255 m_int = [int.from_bytes(m_i, sys.byteorder) for m_i in m]
256 c_int = [int.from_bytes(c_i, sys.byteorder) for c_i in c]
257 if verbose:
258 print("Calculated m, c...")
259
260 # Calculate xyz_500
261 xyz = [mod(1/(abs(m_int[i] - c_int[i]) + r), mod_n) for i in range(3)]
262 for i in range(500):
263 xyz = update_xyz(xyz, mod_n, r)
264
265 # C_rk is the encrypted image at start of round rk
266 # C_0 = original encrypted image
267 C_rk = np.array(img, dtype=np.float32)
268 # xyz_prev holds the value xyz_{500 + rk(MN)} (xyz_500 before rk loop)
269 xyz_prev = xyz
270
271 for rk in range(5):
272 if verbose:
273 print("In decryption round {}...".format(rk))
274 C_rk, xyz_prev = encryption_round(C_rk, xyz_prev, mod_n, r, verbose)
275
276 # Output decrypted image
277 return C_rk
278
279 if __name__ == "__main__":
280 img_filename = "testimage1_64x48.jpg"
281 print("Starting...")
282 start = time.time()
283 pk, sk = read_keys("rsa-keys/public.pem", "rsa-keys/private.pem")
284 img = cv2.imread("images/" + img_filename)
285 c, r, enc_img = enc(img, pk, verbose=True)
286 print("Time to encrypt:", time.time() - start)
287 cv2.imwrite("encrypted/" + img_filename, enc_img)
288
289 start = time.time()
290 dec_img = dec(enc_img, c, r, pk, sk, verbose=False)
291 print("Time to decrypt:", time.time() - start)
292 cv2.imwrite("results/" + enc_filename, dec_img)
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