
Distributed and Secure Password Manager
.

6.857 Computer and Network Security
Spring 2021

Christina Chen
chrix@mit.edu

Marc Felix
felixm@mit.edu

Stephen Otremba
sotremba@mit.edu

Nyle Sykes
nsykes@mit.edu

Abstract

Password managers are software applications used to
store passwords for various applications; they allow
users to use unique, complex, randomly generated pass-
words for each of their accounts, without having to mem-
orize each password. An overwhelming majority of the
password managers today operate under a centralized
model, where a single company maintains a user’s pass-
words in a central database. This requires a user to
fully trust the security measures chosen by the organiza-
tion of their password manager. Additionally, users must
also trust that a password manager will reliably and se-
curely store their data, and ensure it is easily retrievable
during possible network failures. We propose a decen-
tralized, secure password manager system that requires
zero trust in any central organization and provides a
stronger data availability guarantees, while maintaining
a similar level of security.

1 Introduction

There exist a wide array of password managers that
follow a centralized model. Password managers face
two primary challenges: fault tolerance, or resiliency
against loss of data, and security, or resiliency against
adversaries looking to access the data. Open-source
solutions rely on crowd-sourced efforts to eliminate
security vulnerabilities, but the majority of options
available do not fall under this category. Given the lack
of transparency in code bases, we highlight the difficulty
in distinguishing a reliable password manager from an
unreliable one.

There has been research analyzing the security of
existing password managers, none of which are open
source and all of which are centralized. [1] With over a
dozen popular services analyzed, four did not encrypt
the master password or their users’ data in any way.
Multiple others misuse available protection mechanisms,
leaving their data vulnerable to cryptographic attacks
such as rainbow tables. This leaves few options that
provide a reasonable layer of protection beyond what is
offered by the operating system on which a password
manager operates. This paper describes a system
designed to address the unreliability of the centralized
model.

We present the design of a distributed and secure pass-
word manager, where all infrastructure is stored in an
open-source repository. User data is stored in a decentral-
ized manner, encrypted and distributed among multiple
nodes. With a decentralized password manager, there is
no requirement of trust from users, both with regards
to the cryptographic security of the system and with re-
gards to the accessibility of their data. By committing to
an open-source model, we, like Bitwarden, allow users
to audit the security of our system and maintain full
knowledge of how their data is secured throughout the
system. This gives users full confidence that their data
is secure without requiring them to place trust in us. We
also ensure a stronger reliability guarantee by reducing
dependency on any single storage facility. These two
characteristics work to create a system that requires min-
imal trust from its users while providing the same level
of information security as existing centralized password
managers.

1

2 Prior Work

There exist few projects within the distributed password
manager space. The projects that do exist, for various
reasons, do not satisfy our design objectives.

• You. is a password manager leveraging decentral-
ized storage and messaging. This solution uses a
mobile application to serve as the password man-
ager and a Chrome extension to serve as a bridge
between the mobile application and the computer.
A push notification oracle built with Ethereum is
used to notify the mobile application when the com-
puter needs to access a password. Unfortunately,
in this solution, the passwords are not stored in a
distributed manner, but on the phone itself.

• Safeguard is a blockchain-based, decentralized
password manager. Passwords are protected via a
decentralized Blockstack ID. Blockstack is an open
network for decentralized applications and smart
contracts on Bitcoin. Unfortunately, this service re-
lies on the Blockstack platform, and the Blockstack
platform is built on Bitcoin, which has limitations
when used as a first layer platform compared to
other protocols like Ethereum.

• Vaulilo is a secure password manager also based
on Blockstack. It is truly distributed, but like Safe-
guard, it has inherent limitations native to the
blockchain platform on which it is built.

3 System Overview

In the following sections, we describe our design goals
with a focus on the system’s security policy.

3.1 Design Goals

We have three primary design goals for this system.

• The system must be trustless. A key drawback of
centralized password managers is the need to trust
some central authority, their encryption standards,
their data storage protocols, and their associated
actors in order to use their service. A distributed
password manager must not require trust in any
central entity.

• The system must provide a guarantee of data re-
siliency. As we are distributing the storage of pass-
words across a network of nodes, we must ensure
that password data will always be available to users
and resilient to both attacks and normal network
usage.

• The system must provide a comparable level of
security to industry-standard, centralized password
managers. It is important that we not compromise
on security, an essential element of any password
manager, as we pursue the decentralization of the
service.

4 Security Policy

4.1 Objectives

In order to alleviate the technical and security deficien-
cies of traditional, centralized password managers, we
propose a design for a distributed and secure manager ca-
pable of storing the desired assets in a decentralized and
fault-tolerant manner while maintaining cryptographic
security. To ensure that such a system is completely
trustless, we choose to implement the system using a
decentralized peer-to-peer network. Doing so would pro-
tect a user’s passwords and notes from data loss by re-
dundantly storing these values across multiple machines
within such a network, freeing the user from relying on a
centralized storage system which may be susceptible to
outages, data corruption, or worse, data compromise. In
this policy, we outline some of the desired core function-
alities of such a distributed system, including potential
security risks associated with each function and the rele-
vant actors involved in each process.

4.2 Definitions

We define a set of terms that we will frequently make
use of throughout our policy:

• User: An entity that uses our password manager to
store information.

• Password/Asset: A password or other piece of sen-
sitive information that a user wishes to store in our
password manager.

2

• Node: A physical machine used for storage in our
system’s distributed network. In our peer-to-peer
network, this is an individual computer owned by a
network participant.

• Node Owner/Manager: An entity capable of
viewing and potentially modifying the data stored
in a node. In our system, this is another user of the
network.

• Password Management Client: The software run-
ning on user devices and storage nodes that enables
a user to interface with the storage network. The
client executes processes that allow users to store
and retrieve passwords from our distributed net-
work and processes that allow each user’s node to
act as a storage node for other users.

• Username: A user’s unique identifier, potentially
an email address or phone number, used within the
password management client.

• Master Password: A password used by a user to
authenticate themselves when using the password
management client.

• Bystander: Any entity that is not part of the previ-
ously specified groups.

4.3 Account Creation

To begin interfacing with the password management net-
work, we must facilitate the creation of a new node and
an associated user account whenever someone wishes
to join the system. This account should be comprised of
some uniquely identifying username for each user and a
master password that authenticates a user’s identity.

4.3.1 Relevant Actors

• Users

• Nodes/Node Owners

• Bystanders

4.3.2 User’s Desired Functionalities

When enrolling as a node in the password management
network, a user should be able to provide some uniquely
identifying username (such as an email or phone

number), along with a strong master password that
will be used to validate the user’s identity in the future.
The user should also be able to enroll in some sort of
Two-Factor Authentication system. The user’s machine
should also be able to easily identify other nodes in the
network in order to participate in the password storage
scheme.

Once enrolled as a node in the network, the user should
be able to participate in all system functionalities that
the password manager provides. We will describe some
of those functionalities later in this policy and in the
implementation component of this paper.

4.3.3 Node Owner’s Desired Functionalities

Existing nodes of the network should be able to contact
any newly enrolled node of the network in order to use
them for potential password storage.

4.4 Asset Storage

The most basic function that our network must perform
is the storage of sensitive user information for future
retrieval. This is the core utility of a password manager.

4.4.1 Relevant Actors

• Users

• Nodes/Node Owners

• Bystanders

4.4.2 User’s Desired Functionalities

To store an asset with our system, the user should be
able to simply enter the desired data in its raw form into
the password management client after authenticating
with their master password. The user should have the
option to store 3rd party account information such as
usernames and passwords or other data such as notes or
financial information.

In order to be able to trust the system, the user should be
guaranteed information security when storing assets. For
example, any data transferred to storage nodes must be
encrypted/secure. Raw asset data must never be visible
to other node owners.

3

4.4.3 Node Owner’s Desired Functionalities

Adding another user’s encrypted asset to a node’s
machine should be a completely passive process for
that node’s owner. The node’s owner should not have
to approve each new addition, and associated metadata
should handle the process of recording who owns each
stored asset.

All asset data given to a storage node and its owner
should be encrypted with keys that are inaccessible to
the node owner or shared using a secure secret sharing
scheme. The node owner should never be able to view
raw asset data or any master password associated with
another user.

4.5 Asset Retrieval

After storing an asset in the network, users should be
able to easily retrieve and decrypt that information on
their personal devices whenever desired.

4.5.1 Relevant Actors

• Users

• Nodes/Node Owners

• Bystanders

4.5.2 User’s Desired Functionalities

A user should be able to determine the location of
any stored assets and securely access that asset data
whenever they desire. This should be possible from any
of the user’s personal devices which have the password
management client installed. Furthermore, they should
be able to access this asset data after providing only
their personal node information and/or their master
password (and potentially a Two-Factor Authentication
code).

A user’s retrieved asset data should only be decrypted
on the user’s personal machine. This decryption must
never occur on another user’s node. We do this to ensure
that only the user has the ability to view their raw asset
data.

4.5.3 Node Owner’s Desired Functionalities

When receiving a request for retrieval of an encrypted
asset, a node and its installed client should be able
to find that asset in its memory/drive and produce to
the querying user. This process should be passive and
should not require a node owner to manually approve a
retrieval request.

The node owner should only pass the encrypted asset
back to the password management system and should
never decrypt or otherwise alter the data prior to trans-
mitting it to the requesting user.

5 System Design

5.1 Node Onboarding

A new node is added to our network when a new user
creates an account. Similar to the design of private-IPFS,
all nodes on our network store a network key. When a
new node joins, it is given the network key.

The new node is also assigned a public key and a private
key. We use RSA to generate this pair of keys. A node
then generates its node ID, which is a cryptographic
hash of its public key. The creation of a node ID allows
different nodes on our network to authenticate each
other. Node IDs on our network are generated through a
SHA-256 multihash of a base64 encoded public key, a
cryptographic standard that is also followed by IPFS
currently [4].

If two nodes attempt to connect, they perform multiple
checks to authenticate the other node. If one has a
network key, the presence of the correct key is checked
in the other. If both nodes verify that their network
keys match, they then exchange public keys. Both
nodes then verify that the node IDs match the hash of
the exchanged public keys. Assuming all checks are
passed, all communication between the two nodes is
then encrypted using the keys they just exchanged.

Once the node is initialized, the master password is
derived, as described in 5.3.1 and used to encrypt
passwords. This process is detailed in section 5.3.2.

Additionally, when a new node is added to the network,

4

a hash of the node’s ID to the node’s network address
is added to a distributed hash table stored across the
network of nodes. This use of this distributed hash table
is described in 5.5.

5.2 Password Generation

One of the key benefits of password managers is the
ability for users to use lengthy, unique, pseudo-random
passwords that would otherwise be difficult to remember
without the aid of a password manager.

To accomplish this, our system uses a cryptographically
secure pseudo-random number generator (CSPRNG),
provided by the operating system on which the system is
running, to generate a pseudo-random ASCII-string that
can be used as a password. Since password generation
is pseudo-random, there is a possibility of generating
trivial passwords (e.g. “aaaaaaa”). To remedy this issue,
we additionally employ open-source password-strength
estimator zxcvbn [6] to ensure that generated passwords
achieve a maximal security rating, regenerating the pass-
word when necessary.

5.3 Password Encryption

Once a secure password has been generated, the system
can work towards securing it. The first step in this pro-
cess involves local, symmetric-key encryption. At a high
level, this is done in two stages:

1. Users enter their master password, and a master key
is generated using PBKDF2.

2. Encrypt the password using AES-256 with the mas-
ter key as an AES key.

5.3.1 Master Key Derivation

Since a user’s master password can be variable length,
and AES-256 requires a 256-bit key, we need a secure
way to transform master passwords to 256-bits. We
choose to do this using Password-Based Key Deriva-
tion Function 2 (PBKDF2), which has five parameters:
Psuedo-Random Function (PRF), Password, Salt, Itera-
tions, and Key Length. We use SHA-256 as the PRF, the
user’s master password as the password, 100,000 as the
number of iterations (industry-standard for open-source
password managers [7]), and 256 bits as the key length.

Using PBKDF2 with these parameters ensures that re-
gardless of a user’s master password, their master key
will always be both the proper length for AES-256 and
unique from all other master keys despite possibly being
derived from a non-unique master password.

5.3.2 Encryption using Master Key

With a properly formatted master key generated, encryp-
tion of generated passwords is a relatively straightfor-
ward task. We can employ AES with a block size of
256-bits, which will output the ciphertext of the gener-
ated password. The use of this ciphertext is described
in 5.4. As an additional security measure, we also flush
both the master password and master key from memory
once this process is complete, ensuring that this data is
never stored for longer than necessary.

5.4 Secret Sharing

With a secure password encryption scheme designed,
we can now discuss the manner in which this data will
be stored in our distributed network of nodes. Since we
want our system to provide an added level of security and
fault tolerance relative to traditional password managers,
our storage scheme must fulfill some key design goals:

• Our storage scheme should be redundant, mean-
ing that multiple copies of the data must exist to
ensure that the data is recoverable in the event that
some copies are lost or compromised.

• The stored data should be distributed across mul-
tiple nodes of our network, thus ensuring that our
data is safe in the event that any individual storage
node is taken offline or otherwise made unavail-
able.

• The scheme should be secure, meaning that indi-
vidual pieces of stored data should never reveal any
information about the raw password that it encodes.

In order to fulfill these objectives, we leverage secret
sharing to split our encrypted passwords into a number
of shares, each of which are then sent to unique,
randomly chosen nodes in the network. To ensure the
security of such a scheme, we choose to use Shamir’s
Secret Sharing Scheme (SSSS), with our secret s being
our encrypted password. [2] In order to easily verify

5

Figure 1: Password Life Cycle

that our shares are valid when reconstructing our secret,
we extend Shamir’s scheme using Feldman’s Verifiable
Secret Sharing (VSS). [3] Following these schemes
ensures that each share of data reveals no information
about the underlying password that it encodes, allowing
us to store the shares in the network in a trustless manner.

5.4.1 Sharing Process

Following Feldman’s VSS in this way would be done
with the following procedure:

1. First, we choose a cyclic group G with prime or-
der p for which the discrete log assumption holds,
along with a generator of G. For this scheme, we
choose p such that p is a Sophie-Germain prime
and that q = 2p+ 1. We also choose G such that
G = Qq, which has order p. We take g to be the
generator for this group.

2. We then take our secret s and compute a random
polynomial P of degree t with coefficients in Zp

without revealing it. We consider the computed
polynomial to be P(x) = s+a1x+a2x2 + ...+atxt .

3. For some predetermined n and all j ∈ {1,2, ...,n},
we pick a unique value x j to generate a share that
will be sent to an individual storage node. Our
shares become v j = P(x j) (mod p) for all j.

4. Finally, we compute commitments to the coeffi-
cients of the polynomial P in modulo q. These com-
mitments are c0 = gs (mod q) and ci = gai(mod q)

for i ∈ {1,2, ..., t}. This gives us commitments c0,
c1, ..., ct .

Normally these commitments would be sent to share-
holders along with the computed shares, but if we
store these commitments on our user’s machine, we
can instead use them to verify that our returned shares
are valid before reconstructing them to retrieve our
encrypted password. We can now send these computed
shares to nodes in our network to securely, redundantly
store our passwords.

In our implementation, we choose values t = 4 and n =
30 via a probabilistic analysis described in section 6.3.
This means that we send 30 shares of the secret and
require at least 5 of them to successfully reconstruct it.

5.5 Password Storage and Retrieval

5.5.1 Password Storage

Given 30 shares, 5 of which can be combined to produce
the ciphertext using our secret sharing scheme, we then
store these shares randomly across the distributed net-
work of nodes. The password storage protocol works as
follows:

1. Randomly select 30 nodes from the network of
nodes. This can be done similarly to how IPFS
chooses nodes to store information (choosing a
node with a hashed value closest to the hashed

6

value of a share). The exact mechanism is not im-
portant as long as it leads to proper load balancing
across the system.

2. Send passID = hash(username || entryID)
and share i to each node i. The entryID is
unique to each entry, or password, for that user. It
can be as simple as a time-stamp representing when
that password was created, or it could be metadata
describing what type of password is being stored.
The first node will receive passID and the first
share, the second node will receive passID and the
second share, and so on.

3. Each node i will map passID to share i in their
local storage.

4. Locally, the user will map passID to [node 1 ID,
node 2 ID, ..., node 30 ID] and to [c1, c2,
..., c30], where ci is the commitment to the ith node’s
share. This enables the user to know which nodes
to query to retrieve the stored shares at a later point.

5.5.2 Password Retrieval

The password retrieval process is similar to the password
storage process, but in reverse.

• The user computes passID = hash(username
|| entry ID) with the entryID corresponding
to the password they wish to retrieve.

• The user references their internal storage and uses
passID to retrieve the list of node IDs that are
storing the shares, along with their relevant com-
mitments.

• The user references the distributed hash table to
retrieve the network addresses for each node ID.

• The user queries each network address and provides
them with passID. Each node i will return to the
user share i.

• The user verifies that each returned share is legiti-
mate using the commitments ci from our VSS pro-
cedure. After verification, we choose any 5 veri-
fied shares and simply reconstruct our secret to re-
trieve our stored encrypted password. The analysis
in section 6.3 describes why this procedure should
successfully reconstruct our secret with very high
probability.

In the event that one of the shares returns as invalid, we
consider the scheme weakened and immediately instruct
our storage nodes to delete their stored shares of this
password. We then redo our password storage procedure
from section 5.5.1 by choosing a new sharing polyno-
mial and new set of 30 storage nodes. We do this to
minimize the impact of a potential adversary node that
has returned an invalid share with malicious intent.

5.6 Password Decryption

Once the password ciphertext has been reconstructed
from the shares, decryption can take place locally
using the same symmetric-key structure as the initial
encryption. Since neither the master key nor the master
password are ever stored locally, the master key must
be re-derived every time a user attempts to decrypt a
password ciphertext. In order to generate the proper
master key, PBKDF2 must once again be used with
the same parameters described in section 5.3.1. With
the master key derived, we can simply run AES-256
in decryption mode to retrieve the original password
plaintext.

As an added security measure, once the password cipher-
text has been decrypted, the plaintext is only allowed to
live in memory until one of two conditions are met:

1. The user has indicated that they no longer require
the password plaintext.

2. A timeout limit of 30 seconds has elapsed.

When either of these conditions are met, the password
plaintext, master key, and master password are flushed
from memory.

5.7 Node Removal

There are a few situations that lead to a node leaving
the network. A node may become inactive for extended
periods of time or engage in suspicious behaviour.
When a node is removed from our network, it is treated
as an adversary, and we ensure that the data stored in the
node is rendered useless. As mentioned in section 5.4.1,
our implementation of secret sharing allows ciphertexts
to be reconstructed through 5 shares.

7

To eliminate any probabilistic likelihood that multiple
removed nodes can reconstruct a cipher text together,
for each share on a removed node, we recompute a new
polynomial P of degree t with coefficients in Zp for the
related ciphertext. The newly generated shares are then
sent to nodes within the network, and the old copy of
shares are deleted. The node ID of the removed node
is removed from local storage and removed from the
distributed hash table mapping node IDs to network
addresses. At this time, the node will no longer be ac-
cessible for retrieval.

6 Security Analysis

In the following sections, we analyze the security of
various key components of our system.

6.1 Analysis of Network Composition

Our network is designed to be resilient against any
malicious nodes, either outside or inside the network.
One category of possible adversaries is foreign attack
nodes, who may try to join the network or ask for
information from the network. Our system’s dependence
on both network keys and a node ID ensures proper
authentication before any two nodes connect, and
remains secure against any such attacks.

A second category of adversaries is malicious nodes
within the network. Our design requires a passID for
the retrieval of each share, which ensures that only the
node that generated the shares is able to later retrieve it.
Even if the adversary becomes part of the network, they
are unable to receive any new information they did not
generate themselves.

Finally, we will add load-balancing across the network,
to prevent any single node from launching a DDoS attack
and overwhelming the network.

6.2 Analysis of Encryption

The security of AES with 256-bit blocks in a secure
mode such as Galois/Counter Mode (GCM) is well-
established and generally agreed upon, therefore we
will not directly analyze the security of AES.

However, it is worth analyzing the added security of
using PBKDF2 to generate the master key. Since AES
is assumed to be secure, one of the next most feasible
attacks is a rainbow table attack [5] where an adversary
can precompute a table of “master” keys for common
passwords then use those to check whether they result
in a valid decryption. If we assume an adversary is able
to obtain the necessary shares to reconstruct a password
ciphertext at all, it is reasonably likely that the adversary
would be able to determine the valid master key for
a given ciphertext if we used a naive key derivation
function.

PBKDF2 alleviates this concern in two ways. First,
by including a salt in the key derivation process,
we make a rainbow table attack exponentially more
computationally intensive relative to the length of the
salt (i.e. the user’s username). Second, by setting the
number of iterations used for key derivation to 100,000,
we make the computation of a single key significantly
more intensive, meaning each unique table will take
longer to compute. [5]

These two factors effectively render any precomputation-
style attack infeasible, further increasing the security of
the decryption process.

6.3 Analysis of Secret Sharing

With a standard network of nodes storing shares in a
secret sharing scheme, system designers must consider
the possibility that any one node might be corrupted or
malicious. In our system, we must consider these in
addition to the possibility that any one node is offline
and unable to respond to a query for information. Since
nodes are users’ personal devices, there is a nontrivial
probability that a node may be a properly-functioning
good actor that has a temporary loss of internet
connection.

We assume that the probability that any one node is
corrupted, malicious, or offline is 30%. We choose to
store shares across 30 nodes and require 5 shares in
order to decrypt the secret. We are thus able to compute
the probability that any one query to the network for a
password fails via the following expression:

8

n

∑
i=r

(1− p)i · pn−i ·
(

n
i

)
= 99.99999998%

where p = 30%,n = 30,r = 5

This implies that any given user would need to query
the network for a password 5.6 billion times in order
to expect that one of those queries is unsuccessful. We
believe that this provides the user with sufficient data
resiliency, one of our key design goals.

7 Conclusion

Our implementation of a password manager is designed
to provide at least the same level of information secu-
rity as existing industry-standard, centralized managers,
while storing the data in a distributed, fault-tolerant man-
ner. We ensure password security through password en-
cryption, RSA node authentication, and secret sharing.
This security is maintained effectively through a network
of nodes, eliminating the need for a central server or for
trust in any one central entity. The redundancy of our
system also creates a strong guarantee of data resiliency
against both adversarial attacks and network failures.

8 Acknowledgements

The completion of this paper would not have been possi-
ble without the abundant support that we received from
the 6.857 staff. We would specifically like to thank Ron
Rivest and Yael Kalai for the enlightening lectures that
provided the foundation of our work. We would also
like to thank Andrés Fabrega and Kyle Hogan for their
incredibly helpful project advice. Thank you all for an
amazing semester!

References

[1] “‘Secure Password Managers’ and ’Military-
Grade Encryption’ on Smartphones:
Oh, Really?.” Belenko and Sklyarov,
https://www.elcomsoft.com/WP/BH-EU-2012-
WP.pdf.

[2] “How to Share a Secret.” A. Shamir. Commun.
ACM, 22(11):612–613, 1979.

[3] “A Practical Scheme for Non-interactive Verifiable
Secret Sharing.” P. Feldman. In IEEE FOCS’87,
pages 427–437, 1987.

[4] “IPFS And Privacy.”
https://docs.ipfs.io/concepts/privacy/.

[5] “Making a Faster Cryptanalytic Time-Memory
Trade-Off.” Oechslin, P. Advances in Cryptology
- CRYPTO 2003. LNCS. 2729. pp. 617–630.

[6] “zxcvbn: Low-Budget Password
Strength Estimation." D. L. Wheeler,
https://www.usenix.org/conference/usenixsecurity16
/technical-sessions/presentation/wheeler.

[7] “Bitwarden Security Whitepaper." Bitwarden.
https://bitwarden.com/images/resources/security-
white-paper-download.pdf.

We would like to thank the Mass Eta chapter of Phi
Kappa Theta fraternity for its eternal support of our
pursuit of knowledge. CHUNGA CHUNGA. It’s a wrap,
folks.

9

	Introduction
	Prior Work
	System Overview
	Design Goals

	Security Policy
	Objectives
	Definitions
	Account Creation
	Relevant Actors
	User's Desired Functionalities
	Node Owner's Desired Functionalities

	Asset Storage
	Relevant Actors
	User's Desired Functionalities
	Node Owner's Desired Functionalities

	Asset Retrieval
	Relevant Actors
	User's Desired Functionalities
	Node Owner's Desired Functionalities

	System Design
	Node Onboarding
	Password Generation
	Password Encryption
	Master Key Derivation
	Encryption using Master Key

	Secret Sharing
	Sharing Process

	Password Storage and Retrieval
	Password Storage
	Password Retrieval

	Password Decryption
	Node Removal

	Security Analysis
	Analysis of Network Composition
	Analysis of Encryption
	Analysis of Secret Sharing

	Conclusion
	Acknowledgements

